admin 管理员组文章数量: 1087139
2024年4月16日发(作者:c语言用什么软件打开)
Although dependence and independence are properties of sets of elements,
we also apply these terms to the elements themselves. For example, the elements
in an independent set are called independent elements.
虽然相关和无关是元素集的属性,我们也适用于这些元素本身。 例如,在一个独立
设定的元素被称为独立元素。
If s is finite set, the foregoing definition agrees with that given in Chapter 8
for the space
V
n
. However, the present definition is not restricted to finite sets.
如果S是有限集,同意上述定义与第8章中给出的空间
V
n
,然而,目前的定义不局
限于有限集。
If a subset T of a set S is dependent, then S itself is dependent. This is logically
equivalent to the statement that every subset of an independent set is
independent.
如果集合S的子集T是相关的,然后S本身是相关的,这在逻辑上相当于每一个独
立设置的子集是独立的语句。
If one element in S is a scalar multiple of another, then S is dependent.
如果S中的一个元素是另一个集中的多个标量的,则S是相关的。
If
0S
,then S is dependent.
若
0S
,则 S 是相关的。
The empty set is independent.
空集是无关的。
Many examples of dependent and independent sets of vectors in V were
discussed in Chapter 8. The following examples illustrate these concepts in
function spaces. In each case the underlying linear space V is the set of all
real-valued function defined on the real line.
V中的向量的相关和无关设置的许多例子是在第8章讨论。下面的例子说明这些概念
在函数空间。在每个 基本情况下,线性空间V是实线定义的所有实值函数集。
Let
u
1
(t)cos
2
t,u
2
(t)sin
2
(t),u
3
(t)1
for all real t. The Pythagorean identity show
that
u
1
u
2
u
3
0
, so the three functions
u
1
,u
2
,u
3
are dependent.
u
1
,u
2
,u
3
是相关的。
Let
u
k
(t)t
k
for k=0,1,2,…, and t real. The set
S{u
0
,u
1
,u
2
,...}
is independent. To
prove this, it suffices to show that for each n the n+1 polynomials
u
0
,u
1
,...,u
n
are
independent. A relation of the form
cu
kk
0
means that
ct
(10.1)
k
k
0
for all real t. When t=0, this gives
c
0
0
. Differentiating (10.1) and setting t=0,
we find that
c
1
0
. Repeating the process, we find that each coefficient
c
k
is zero.
If
a
1
,...,a
n
are distinct real numbers, the n exponential functions
u
1
(x)e
a
1
x
,...,u
n
(x)e
a
n
x
are independent. We can prove this by induction on n. The result holds trivially
when n=1. Therefore, assume it is true for n-1 exponential functions and consider
scalars
c
1
,...,c
n
such that
(10.2)
ce
k
k1
n
a
k
x
0
Let
a
M
be the largest of the n numbers
a
1
,...,a
n
. Multiplying both members of
ax
(10.2) by
e
, we obtain
M
(10.3)
ce
k
k1
n
(a
k
a
M
)x
0
If
kM
, the number
a
k
a
M
is negative. Therefore, when
x
in
Equation(10.3), each term with
kM
tends to zero and we find that
c
M
0
.
Deleting the Mth term from (10.2) and applying the induction hypothesis, we find
that each of the remaining n-1 coefficients
c
k
is zero.
Let S be an independent set consisting of k elements in a linear space V and let
L(S) be the subspace spanned by S. Then every set of k+1 elements in L(S) is
dependent.
设S是一个独立的由k个元素组成的线性空间V,L(S)是S的子空间.每隔K +1的
元素在子空间L(S)是相关的。
Proof. When
VV
n
,Theorem 10.5 reduces to Theorem we examine the
proof of Theorem 8.8, we find that it is based only on the fact that
V
n
is a linear
space and not on any other special property of
V
n
. Therefore the proof given for
Theorem 8.8 is valid for any linear space V.
证明。当
VV
n
,定理10.5降低到8.8定理。如果我们研究证明定理8.8,我们发现,
这是唯一的事实是一个线性空间上没有任何其他特殊财产。因此,定理8.8的证明有效期
为任何线性空间V。
版权声明:本文标题:数学专业英语2-10翻译 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://roclinux.cn/b/1713235781a625287.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论