admin 管理员组文章数量: 1086019
2024年3月7日发(作者:嵌入式开发分为哪些)
df1:
id fname0 1 Kate1 2 John2 5 Elidf2: age grade0 10 A1 20 B2 50 Cdf3: id age0 3 301 4 40df1_append_df2: id fname age grade0 1.0 Kate NaN NaN1 2.0 John NaN NaN2 5.0 Eli NaN NaN0 NaN NaN 10.0 A1 NaN NaN 20.0 B2 NaN NaN 50.0 Cdf1_append_df2_df3: id fname age grade0 1.0 Kate NaN NaN1 2.0 John NaN NaN2 5.0 Eli NaN NaN3 NaN NaN 10.0 A4 NaN NaN 20.0 B5 NaN NaN 50.0 C6 3.0 NaN 30.0 NaN7 4.0 NaN 40.0 NaN追加 Series
df1: id fname0 1 Kate1 2 John2 5 Elis1:a aab bbdtype: objects2:id 110fname Supermendtype: objectdf1_appened_s1: id fname a b0 1.0 Kate NaN NaN1 2.0 John NaN NaN2 5.0 Eli NaN NaN3 NaN NaN aa bbdf1_appened_s2: id fname0 1 Kate1 2 John2 5 Eli3 110 Supermen追加 dict 字典代码:
import pandas as pdidnumber = [1,2,5]fname = ['Kate','John','Eli']df1 = ame({'id':idnumber,'fname':fname})dicts_1 =[{"a":"aa", "b":"bb"},{"a":"aaa", "b":"bbb"}]dicts_2 =[{"id":"110", "fname":"Supermen"},{"id":"111", "fname":"Superwoman"}]print("df1:n{}".format(df1))print("dicts_1:n{}".format(dicts_1))print("dicts_1:n{}".format(dicts_1))df1_appened_dicts_1 = (dicts_1)df1_appened_dicts_2 = (dicts_2, ignore_index=True)print("df1_appened_dicts_1:n{}".format(df1_appened_dicts_1))print("df1_appened_dicts_2:n{}".format(df1_appened_dicts_2))输出:df1: id fname0 1 Kate1 2 John2 5 Elidicts_1:[{'a': 'aa', 'b': 'bb'}, {'a': 'aaa', 'b': 'bbb'}]dicts_1:[{'a': 'aa', 'b': 'bb'}, {'a': 'aaa', 'b': 'bbb'}]df1_appened_dicts_1: id fname a b0 1.0 Kate NaN NaN1 2.0 John NaN NaN2 5.0 Eli NaN NaN0 NaN NaN aa bb1 NaN NaN aaa bbbdf1_appened_dicts_2: id fname0 1 Kate1 2 John2 5 Eli3 110 Supermen4 111 Superwoman
版权声明:本文标题:Python玩转数据-Pandas数据处理追加df.append() 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://roclinux.cn/b/1709822713a547405.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论