admin 管理员组文章数量: 1086019
2024年12月27日发(作者:前端开发和后端开发哪个赚钱)
Lithos110(2009)327–342
ContentslistsavailableatScienceDirect
Lithos
journalhomepage:/locate/lithos
TransitionaltimeofoceanictocontinentalsubductionintheDabieorogen:
ConstraintsfromU–Pb,Lu–Hf,Sm–NdandAr–Armultichronometricdating
HaoCheng
a,b,
⁎
,
c
,EizoNakamura
b
,rt
c
,Yong-FeiZheng
d
,TsutomuOta
b
,
Yuan-BaoWu
e
,KatsuraKobayashi
b
,Zu-YiZhou
a
a
StateKeyLaboratoryofMarineGeology,TongjiUniversity,Shanghai200092,China
InstituteforStudyoftheEarth'sInterior,OkayamaUniversityatMisasa,Tottori682-0193,Japan
c
SchoolofEarthandEnvironmentalSciences,WashingtonStateUniversity,Pullman,Washington99164,USA
d
CASKeyLaboratoryofCrust-MantleMaterialsandEnvironments,SchoolofEarthandSpaceSciences,UniversityofScienceandTechnologyofChina,Hefei230026,China
e
StateKeyLaboratoryofGeologicalProcessesandMineralResources,FacultyofEarthSciences,ChinaUniversityofGeosciences,Wuhan430074,China
b
articleinfoabstract
Weinvestigatedtheoceanic-typeXiongdianhigh-pressureeclogitesinthewesternpartoftheDabieorogen
withcombinedU–Pb,Lu–Hf,Sm–NdandAr–roupsofweighted-mean
206
Pb/
238
U
agesat315±5,373±4and422±rast,Lu–Hfand
Sm–Ndisochrondatesyieldidenticalagesof268.9±6.9and271.3±teandamphiboleAr–Ar
totalfusionanalysesgiveNeoproterozoicapparentages,whicharegeologicallymeaninglessduetothe
presenceofexcess
40
claseinclusionsinzirconcoressuggestthattheSilurianageslikelyrepresent
protolithages,whereastheCarboniferousagescorrespondtoprogrademetamorphism,basedonthe
eweakly-preservedprogrademajor-andtraceelementzoningin
garnet,acombinedtexturalandcompositionalstudyrevealsthattheconsistentLu–HfandSm–Ndagesofca.
270Marecordalatereventofgarnetgrowthandthusmarktheterminationofhigh-pressureeclogite–facies
U–Pb,Lu–HfandSm–Ndagessuggestamodelofcontinuousprocessesfrom
oceanictocontinentalsubduction,pointingtotheonsetofprogrademetamorphismpriortoca.315Mafor
thesubductionofoceaniccrust,whilethepeakeclogite–faciesmetamorphicepisodeisconstrainedto
,theinitiationofcontinentalsubductionisnotearlierthanca.270Ma.
©htsreserved.
Articlehistory:
Received22August2008
Accepted9January2009
Availableonline8February2009
Keywords:
Continentalsubduction
Dabie
Eclogite
Geochronology
Oceanicsubduction
Tectonictransition
uction
Subductionzonesareessentialtothedynamicevolutionofthe
earth'tionofoceanicand
continentalcrusteventuallyleadstoclosureofbackarcbasinsandarc-
continentandcontinent-continentcollisions(O'Brien,2001;Ernst,
2005;Zhengetal.,2008),formingvarioustypesofhigh-pressure(HP)
andultrahigh-pressure(UHP)tionof
oceaniclithospherecausesacomplexcontinuumofdiageneticand
metamorphicreactions;manykilometresofoceaniclithosphereare
ultimatelyconsumedpriortothesubsequentcontinentalslab
tedcontinentalslabsthatdetach
fromtheoceaniclithospherethatwasdraggingthemintothemantle
areexpectedtorapidlyrisetoMohodepthsbecauseoftheirpositive
,studyingsubductedoceaniccrustinsubductionzones
canprovidecluestotheincorporationrateofsupercrustalmaterial
⁎eyLaboratoryofMarineGeology,TongjiUniversity,
Shanghai200092,.:+862165982358;fax:+862165984906.
E-mailaddress:chenghao@().
0024-4937/$–seefrontmatter©htsreserved.
doi:10.1016/.2009.01.013
intothemantleandcanshedlightontheinitiationofsuccessive
iningageochronologicalframework
fordeterminingthesequenceanddurationofoceanictocontinental
subductionandHPandUHPmetamorphismplaysanessentialrolein
thisrespect.
Zirconhaslongbeenrecognizedasapromisinggeochronometerof
theU–Pbdecaysystembecauseofitsrefractorynature,commonly
preservedgrowthzonesandmineralinclusionswithinasinglegrain.
Recentdevelopmentsinanalyticaltechniquesallowustounravela
wealthofinformationcontainedinzirconswithrespecttotheir
growthhistoryandthustheprogradeandretrogrademetamorphic
evolutionofthehostrock(Gebauer,1996;Wuetal.,2006;Zhenget
al.,2007).TheLu–Hfgarnettechniquehasbeenappliedtoconstrain
theprogradeandhigh-temperaturehistoriesofmetamorphicbelts
(e.g.,Duchêneetal.,1997;Blichert-ToftandFrei,2001;Anczkiewiczet
al.,2004,2007;Lagosetal.,2007;Kylander-Clarketal.,2007;Chenget
al.,2008a)becauseofitshighclosuretemperature(Dodson,1973;
Schereretal.,2000)andthefactthatgarnetstronglypartitionsLu
overHf,resultinginahighparent/daughterratio(Otamendietal.,
2002).CombinedwithSm–Ndagedetermination,theLu–Hfgarnet
geochronometercanpotentiallybeusedtoestimatethedurationof
tal./Lithos110(2009)327–342
fiedgeologicmapoftheHuwanmélangearea(b)insouthernDabieorogen(a),modifiedafterYeetal.(1993)andLiuetal.(2004b),showingthesamplelocalitiesforthe
nces:asterisk,thisstudy;[1],Ratschbacheretal.(2006);[2],Jahnetal.(2005);[3],Liuetal.(2004a);[4],Eideetal.(1994);[5],Webbetal.(1999);[6],Xu
etal.(2000);[7],Yeetal.(1993);[8],Sunetal.(2002);[9],Jianetal.(1997);[10],Jianetal.(2000);[11],Gaoetal.(2002);[12],Lietal.(2001);[13],Wuetal.(2008).amp—
amphibole;brs—barroisite;phen—phengite;zrn—zircon.
tal./Lithos110(2009)327–342329
garnetgrowth,whicheitherreflectsearlyprogrademetamorphism
(Lapenetal.,2003),exhumation(Chengetal.,2009)oraparticular
garnetgrowthstage(Skoraetal.,2006).Datingtheexhumationof
high-pressure(HP)andultra-high-pressure(UHP)metamorphic
rocksbyconventionalstep-heatingAr–Artechniquewaslargely
hamperedanddiscreditedduetothepresenceofexcess/inherited
argon(Lietal.,1994;Kelley,2002).However,theAr–Argeochron-
ometerremainsirreplaceableinconstrainingtheexhumationofHP/
UHPmetamorphicrocksbecauseofitsintermediateclosuretempera-
heless,timingmustbeintegratedwithtexturesand
petrologyinordertoquantifythedynamicsofgeologicalprocesses,
whichevergeochronologicalmethodisused.
Duringthepasttwodecades,considerableprogresshasbeenmade
inconstrainingtheprogrademetamorphismandexhumationofHP/
UHPmetamorphismoftheDabie–Suluorogenbyavarietyof
geochronologicalmethods,indicatingaTriassiccollisionbetweenthe
,Eideetal.,1994;Amesetal.,
1996;Rowleyetal.,1997;Hackeretal.,1998;Lietal.,2000,2004;
Zhengetal.,2004).Theinitiationofcontinentalsubductionispinned
toca.245Ma(Hackeretal.,2006;Liuetal.,2006a;Wuetal.,2006;
Chengetal.,2008a),
otherhand,thefingerprintsofearlycontinentalsubductionmaynotbe
preservedincontinental-typemetamorphicrocksduetothesucces-
a-
tively,thetimingofinitiationofcontinentalsubductionsubsequentto
theterminationofoceanicsubductionmayberegisteredintheHP/
UHPeclogites,tly,the
onlyoutcroppingcandidateistheXiongdianHPeclogiteinthewestern
partoftheDabieorogen(Lietal.,2001;Fuetal.,2002).However,U–Pb
zirconagesrangingfrom216±4to449±14Mahavebeenobtained
fortheXiongdianeclogite(Jianetal.,1997;Sunetal.,2002;Gaoetal.,
2002);thegeologicalsignificanceofthisagespreadiscontroversial.
EffortstoclarifythegeochronologicalevolutionoftheXiongdian
eclogitewerehamperedbyamucholderSm–Ndgarnet-whole-rock
isochronof533±13Ma(Yeetal.,1993)andthefactthatfurtherSm–
NdandRb–Sranalysesfailedtoproducemineralisochrons(Lietal.,
2001;Jahnetal.,2005),althoughoxygenisotopicequilibriumwas
largelyattained(Jahnetal.,2005).
Here,wepresentacombinedU–Pb,Lu–Hf,Sm–Nd,Ar–Arand
oxygenmulti-isotopicandmineralchemicalstudyoftheXiongdian
ferencesinthesesystems,inconjunctionwith
chemicalprofilesingarnetporphyroblastsandzircons,providea
windowintothetime-scalesoftheoceanicsubductionandsub-
sequentexhumation.
onologicalbackgroundandsampledescriptions
TheQinling–Dabie–
Suluorogenineast-centralChinamarksthe
junction
betweentheNorthandSouthChinaBlocks(Cong,1996;
Zhengetal.,2005).ThewesternpartoftheDabieorogen,usually
termedtheWestDabieandsometimestheHong'anterrane,is
separatedfromtheTongbaishaninthewestbytheDawuFaultand
fromtheEastDabiebytheShangmafaultintheeast(Fig.1a).It
containsaprogressivesequenceofmetamorphiczonescharacterized
byincreasingmetamorphicgrade,fromtransitionalblueschist–
greenschistinthesouth,throughepidote–amphiboliteandquartz
eclogite,,Zhouetal.,1993;Hacker
etal.,1998;Liuetal.,2004b,2006b).TheXiongdianeclogitescropout
inthenorthwesterncorneroftheWestDabie,intheXiongdian
mélangewithintheHuwanmélangeafterthedefinitionofRatschba-
cheretal.(2006),inanalogytothetermsoftheSujiahemélange(Jian
etal.,1997)andHuwanshearzone(Sunetal.,2002).TheHuwan
mélangeconsistsofeclogite,gabbro,amphibolite,marble,and
ogiticmetamorphicpeakfortheXiongdianeclogite
isestimatedat600–730°C,1.4–1.9GPa(Fuetal.,2002),550–570°C,
∼2.1GPa(Liuetal.,2004b)and540–600°C,∼2.0GPa(Ratschbacher
etal.,2006),followedbyretrogressionat530–685°Cand∼0.6GPa
(Fuetal.,2002).
ExceptfortheXiongdianeclogite,consistentTriassicmetamorphic
ageshavebeenobtainedforothereclogitesacrosstheWestDabie
(Webbetal.,1999;Sunetal.,2002;Liuetal.,2004a;Wuetal.,2008).
ThisindicatesthatWestDabieislargelyacoherentpartofanHP–UHP
beltelsewhereintheDabie–onological
debateislimitedtotheXiongdianeclogite(Fig.1b).U–Pbzircon
agesrangingfromca.216toca.449Mahavebeenobtainedfor
al.(1997)reportedca.400,ca.373and
301±0.6MaagesbyID–ed-meanSHRIMPages
rangefrom335±2to424±5Ma(Jianetal.,2000).TheSilurianU–Pb
zirconageswereinterpretedastheageoftheprotolith,whilethe
Carboniferousagesmarkhigh-pressuremetamorphism(Jianetal.,
1997,2000).Weighted-mean
206
Pb/
238
USHRIMPU–Pbzirconsagesof
433±9,367±10and398±5Mawereinterpretedastheprotolith
age,while323±7and312±5Malikelydatethehigh-pressure
metamorphism(Sunetal.,2002).ATriassicageof216±4Matogether
with449±14and307±14Maweighted-mean
206
Pb/
238
USHRIMP
U–PbzirconagesappeartoarguefortheinvolvementoftheTriassic
subductionintheXiongdianeclogite(Gaoetal.,2002).Agarnet-
whole-rockSm–Ndisochronof533±13Ma(Yeetal.,1993)was
interpretedtorefll
Table1
ChemicalcompositionsoftheXiongdianeclogitefromthewesternDabie.
SamplenumberDB17DB18
(Majoroxidesin%)
SiO
2
54.5452.45
TiO
2
0.370.43
Al
2
O
3
14.6212.35
Fe
2
O
3
8.7710.15
MnO0.150.16
MgO6.669.91
CaO10.3510.26
Na
2
O2.882.65
K
2
O0.600.28
P
2
O
5
0.060.05
Cr
2
O
3
⁎6601118
NiO⁎137247
L.O.I0.871.28
Total99.95100.11
(Traceelementsinppm)
Li27.627.0
Be0.560.47
Rb9.7813.8
Sr178130
Y12.612.7
Cs0.893.67
Ba86552.4
La2.211.77
Ce5.975.12
Pr0.880.80
Nd4.354.10
Sm1.251.26
Eu0.470.39
Gd1.531.52
Tb0.280.29
Dy1.831.91
Ho0.410.42
Er1.141.19
Tm0.190.19
Yb1.311.34
Lu0.200.20
Pb6.441.85
Th0.050.07
U0.110.06
Zr28.828.2
Nb1.191.77
Hf0.870.88
Ta0.050.08
⁎Inppm.
tal./Lithos110(2009)327–342
350Mahavebeenexplainedastheretrogrademetamorphicage(Xu
etal.,2000).The310±3Maphengite
40
Ar/
39
Arage(Webbetal.,1999)
islikelygeologicallymeaninglessduetotheconcave-upwardage
spectrum,tively,
existinggeochronologyprovidesanapparentlyconflictingpicturefor
ingoftheoceaniccrustsubduction
andexhumationessentiallyremainstoberesolved.
Thetwoeclogitesexaminedinthisstudywereselectedbasedon
theirmineralassemblages,inclusiontypesandgeologicalcontext
(Fig.1).Theone(DB17)fromtheeastbankoftherivertotheeastof
Xiongdianvillageisacoarse-grainedandstronglyfoliatedbanded
eclogite,composedmainlyofgarnet,d
(DB18)eclogitewassampledabout50mtothenorthofDB17andis
stronglyfoliatedwithasimilarmineralogyassemblagebutsmaller
garnetgrains.
s
Samplepreparation,mineralseparationandchemicalprocedures
forisotopeanalysis,instrumentationandstandardreferencematerials
usedtodeterminewholerockandbulkmineralcompositions,insitu
majorandtraceelementanalyses(InstituteforStudyoftheEarth's
Interior,OkayamaUniversityatMisasa,Japan),zirconU–Pbisotope
andtraceelementanalyses(ChinaUniversityofGeosciencesin
Wuhan),Lu–HfandSm–Ndisotopeanalyses(WashingtonState
University),Ar–Arisotopeanalyses(GuangzhouInstituteofGeo-
chemistry,ChineseAcademyofSciences)andoxygenisotopeanalyses
(UniversityofScienceandTechnologyofChina)aredescribedinthe
Appendix.
ockchemicalanalysisdata.(a)Chondrite-normalizedREEdistribution
patternsoftheXiongdianeclogites.(b)Primitive-mantle-normalizedspidergramsof
theXiongdianeclogites.
s
emicalcomposition
Sm–NdandRb–Sranalysesfailedtoproducesisochrons(Lietal.,2001;
Jahnetal.,2005),whichwasbelievedtobeduetounequilibrated
isotopicsystemsdespitethefactthatoxygenisotopicequilibriumwas
largelyattained(Jahnetal.,2005).Phengite
40
Ar/
39
Aragesofca.430–
TheXiongdianeclogitesaremainlyofbasalticcomposition,but
theyshowawiderangeofmajorandtraceelementabundances.
DespitethehighSiO
2
(52–58%)andlowTiO
2
(0.32–0.43%)contents,
attered-electronimagesandrim-to-rimmajor-elementcompositionalzoningprofi—
amphibole;Ap—apatite;Cal—calcite;Cpx—clinopyroxene;Zo—zoisite;Phen—phengite;Omp—omphacite;Qtz—quartz;Zrn—zircon.
tal./Lithos110(2009)327–342331
theyhaveMgO=5.1–9.9%,Cr=430–1118ppm,Ni=88–247ppm
(Table1;Lietal.,2001;Fuetal.,2002;Jahnetal.,2005).Incontrastto
existingLREE-enrichedchondriticREEpatterns,oursampleshave
ratherflatREEpatternsaroundtentimesmorechondriticabundances
withsmall,bothnegativeandpositiveEuanomalies(Fig.2a).
RubidiumisdepletedandSrdisplaysenrichmentwithrespecttoCe.
BothnegativeandnoNbanomaliesrelativetoLawereobserved
(Fig.2b).TheN-MORB-normalizedvalueofThisaround0.5,lower
thanpreviousreportedvaluesofupto25(Lietal.,2001).
raphyandmineralcomposition
TheXiongdianeclogitesoccurasthinlayersintercalatedwith
dolomite–plagioclasegneissandphengite–quartzschist(Fuetal.,
2002),mainlyconsistingofgarnet,omphacite,epidote(clinozoisite),
phengiteandminoramphibole,quartzandkyanite(Fig.3).Zircons
wereobservedbothasinclusionsingarnetporphyroblastsandinthe
pleshavesimilarmineralassemblages,butdifferin
ite(X
Jd=0.46–0.48
)te
has3.30–3.32Siapfuand∼0.4wt.%TiO
2
.Garnetsrangeinsizefrom
0.5to5mmindiameter,eitherasporphyroblastsorascoalesced
polycrystals,mostlywithidioblasticshapeswithinclusionsofquartz,
calcite,apatiteandomphacite(Fig.3).Garnetislargelyhomogeneous
(Prp
24–25
Alm
49–50
Grs
24–25
Sps
1.5–1.9
),butshowsaslightlyMn-
enrichedcore(Fig.3d;Table2).HREEsinlargegarnetporphyroblasts,
suchasYbandLu,displayweakbutcontinuousdecreasesin
concentrationfromcoretorim(Fig.4a),mimickingtheMnOzoning
pattern,whichcouldbeexplainedbytheirhighaffinityforgarnetand
likelyarisesfromanoverallRayleighdistillationprocessduringearly
garnetgrowth(Hollister,1966;Otamendietal.,2002).
However,thelimitedvariationinMREEconcentrations,suchasSm
andNd,ingarnetwithrespecttotheweakzoninginHREE(Fig.4a)
mightbeexplainedbygrowthinanenvironmentwhereMREEsare
notlimitedandcontinuouslysuppliedbythebreakdownofother
mhasafairlyflatprofile(Table3),reflectingits
incompatiblecharacteringarnetandabsenceofHf-competing
tinctdomainscanbe
definedinthelargegarnetporphyroblastsbasedonthechemical
onesareaninclusion-
richcorewithricherMnandHREEandaninclusion-freerimwith
poorerMnandHREE(Fig.3d).Theinclusion-freerimforindividual
garnethasarathersimilarwidthof200–250μm(Fig.3).Although
concentrationsofNd(0.22–0.41ppm)andSm(0.33–0.48ppm)vary
withinsinglegarnetgrains,theSm/Ndratios(0.8–2.2)areconsistent
Table2
Representativemajor-elementdataofthegarnets,omphacites,phengites,amphibolesandzoisites.
(wt.%)
Grt
Rim
SiO
2
TiO
2
Al
2
O
3
FeO
⁎
MnO
MgO
CaO
Na
2
O
K
2
O
Total
O.N.
Si
Al
Ti
Fe
2+
Mn
Mg
Ca
Na
K
38.68
0.05
21.92
22.98
0.68
6.37
9.10
0.03
0.00
99.80
12
2.986
1.994
0.003
1.486
0.044
0.733
0.753
0.004
0.000
Phn
Rim
SiO
2
TiO
2
Al
2
O
3
FeO
⁎
MnO
MgO
CaO
Na
2
O
K
2
O
Total
O.N.
Si
Al
Ti
Fe
2+
Mn
Mg
Ca
Na
K
48.86
0.40
29.03
1.99
0.00
2.79
0.01
0.93
10.00
94.02
11
3.302
2.313
0.020
0.112
0.000
0.282
0.001
0.122
0.862
49.09
0.41
28.68
1.99
0.00
2.77
0.01
0.92
9.91
93.78
11
3.323
2.288
0.021
0.113
0.000
0.280
0.001
0.121
0.855
Core
49.33
0.41
29.01
2.00
0.00
2.78
0.01
0.92
9.81
94.28
11
3.318
2.300
0.021
0.113
0.000
0.279
0.001
0.120
0.842
49.01
0.40
29.19
1.97
0.01
2.80
0.01
0.91
9.78
94.09
11
3.304
2.319
0.020
0.111
0.000
0.282
0.001
0.119
0.841
38.64
0.06
21.94
23.05
0.72
6.38
8.94
0.03
0.00
99.77
12
2.984
1.997
0.003
1.491
0.047
0.735
0.740
0.005
0.000
38.66
0.05
22.07
23.06
0.79
6.28
9.02
0.03
0.00
99.96
12
2.981
2.006
0.003
1.489
0.052
0.722
0.745
0.005
0.000
38.53
0.05
21.99
23.16
0.88
6.31
8.92
0.03
0.00
99.87
12
2.975
2.001
0.003
1.499
0.058
0.726
0.738
0.005
0.000
Core
38.65
0.05
21.99
23.05
0.75
6.36
9.03
0.03
0.00
99.91
12
2.980
1.999
0.003
1.489
0.049
0.731
0.746
0.005
0.000
Amp
Rim
47.08
0.22
12.66
11.60
0.10
12.20
9.97
2.79
0.48
97.09
23
6.831
2.164
0.024
1.407
0.012
2.639
1.550
0.784
0.089
47.07
0.22
12.81
11.48
0.09
12.47
10.09
2.77
0.47
97.49
23
6.800
2.182
0.024
1.387
0.012
2.686
1.562
0.777
0.087
Core
46.72
0.22
12.58
11.46
0.09
12.44
10.07
2.82
0.47
96.88
23
6.799
2.158
0.024
1.394
0.012
2.699
1.570
0.795
0.088
46.75
0.22
12.62
11.36
0.09
12.30
10.10
2.83
0.47
96.76
23
6.809
2.167
0.024
1.383
0.012
2.670
1.577
0.798
0.088
38.66
0.05
21.84
23.11
0.68
6.35
8.99
0.03
0.00
99.71
12
2.988
1.990
0.003
1.496
0.044
0.732
0.744
0.005
0.000
Inclusions-in-zircon
37.86
0.05
21.68
24.42
0.99
4.23
10.57
0.02
0.00
99.82
12
2.958
1.997
0.003
1.596
0.066
0.493
0.885
0.003
0.000
37.75
0.08
21.86
24.33
0.93
4.74
9.50
0.01
0.00
99.21
12
2.962
2.021
0.005
1.599
0.062
0.554
0.798
0.002
0.000
Omp
Rim
55.93
0.12
11.26
4.25
0.03
8.15
13.22
6.65
0.00
99.60
6
1.996
0.474
0.003
0.127
0.001
0.434
0.506
0.460
0.000
Zo
Mantle
39.05
0.13
28.55
6.01
0.05
0.07
24.10
0.00
0.00
97.96
12.5
3.008
2.592
0.007
0.387
0.004
0.007
1.989
0.000
0.000
38.92
0.13
28.21
6.01
0.05
0.06
23.86
0.00
0.00
97.24
12.5
3.019
2.579
0.007
0.390
0.004
0.007
1.983
0.000
0.000
Core
39.02
0.13
28.73
6.03
0.06
0.07
24.13
0.00
0.00
98.16
12.5
3.000
2.603
0.007
0.388
0.004
0.007
1.988
0.000
0.000
39.02
0.12
28.62
6.07
0.05
0.07
24.14
0.00
0.00
98.09
12.5
3.003
2.596
0.007
0.390
0.004
0.008
1.990
0.000
0.000
56.12
0.11
11.22
4.23
0.02
8.02
13.36
6.41
0.00
99.60
6
2.010
0.473
0.003
0.127
0.001
0.428
0.513
0.445
0.000
56.13
0.11
11.33
4.32
0.03
7.96
13.32
6.39
0.00
99.70
6
2.010
0.478
0.003
0.129
0.001
0.425
0.511
0.443
0.000
Core
56.20
0.11
11.26
4.27
0.02
8.13
13.34
6.42
0.00
99.87
6
2.007
0.474
0.003
0.128
0.001
0.433
0.511
0.445
0.000
⁎
Totaliron;concentrationsreportedaswt.%.
tal./Lithos110(2009)327–342
shellsdominatethevolumeofLu(Chengetal.,2008a).The0.90–
0.93ppmLucontentsbyID-MC-ICPMSapparentlyresemblethoseof
thegarnetrim,whichcouldbereadilyexplainedbythespherical
r,weinterpretthiswithcautionbecause
individualgarnetporphyroblastscouldhavedifferentzoningpatterns
andtheindividualLuprofilemightnotberepresentativeofthe
populationofgarnetgrains,althoughthechemicalzoningcenter
(nucleationsite)coincideswiththegeometriccenter(Fig.3d),
tion,biasedmineral
hand-pickingshouldbeconsidered(Chengetal.,2008a,b).Moreover,
sincethethin-sectionpreparationmethodforthisstudycannot
ensurethattherealcenterofthegarnetwasexposed,theobserved
zoningherelikelyonlyrepresentsaminimumzoningofparticular
garnetporphyroblasts.
tionofP–Tconditions
MetamorphicpeakP–Tconditionsof2.2GPaand620°CfortheDB17
Xiongdianeclogite(Fig.6)areevaluatedonthebasisofrecentcali-
brationsoftheassemblagegarnet+omphacite+phengite+kyanite+
quartz,accordingtothedatasetofHollandandPowell(1998).Higher
P–Tvaluesof2.4GPaand650°Carecalculatedwiththecalibrationsof
KroghRavnaandTerry(2004).Whileatemperatureof620±29°Cis
estimatedbyquartz–garnetOisotopethermometer(Zheng,1993),Ti-
in-zirconthermometer(Watsonetal.,2006;FerryandWatson,2007)
givessimilarvalueof695±22°-in-rutilethermometer(Watsonet
al.,2006;FerryandWatson,2007)yieldsalowervalueof634–652°C
andasimilartemperatureof683–701°C(Fig.6)whenusingthe
pressure-dependentcalibrationofTomkinsetal.(2007)at2.2GPa.
Calibration1usesupdatedversionsofthethermodynamicdataset
andactivitymodelsintheprograms
THERMOCALC3.26
andAX(Holland,
Powell,1998;latestupdateddataset;Powelletal.,1998)byusingan
avPTcalculationinthesimplifiedmodelsystemNCKFMASHwith
excessSiO
2
andH
2
ation2usesthermobarometrybasedon
thedatabaseofHollandandPowell(1998)andactivitymodelsfor
garnet(Gangulyetal.,1996),clinopyroxene(HollandandPowell,
1990)andphengite(HollandandPowell,1998).Analysesofgarnet,
omphaciteandphengite(Table2)wereprocessedaccordingtothe
ation3usesmineralOisotopecompositions
(Table4)toestimatetemperaturebasedonthequartz–garnetO
isotopethermometer(Zheng,1993).Calibrations4and5useTi
contentsinzirconbyLA-ICPMSandZrconcentrationofrutilebySIMS
(Table5)totemperatureestimationsbasedontheTi-in-zirconandZr-
in-rutilethermometers,respectively(Watsonetal.,2006;Ferryand
Watson,2007;Tomkinsetal.,2007).
Theassemblageofgarnet–omphacite–kyanite–phengite–quartzis
representativeofmetamorphicpeakconditionsoftheXiongdian
ite-normalizedREEpatterns(SunandMcDonough,1989)ofzircons,garnets
andomphacitefromXiongdianeclogite(a)andREEdistributionpatternsbetweenzircon
andgarnet(b).TheequilibriumD
REE(Zrn/Grt)
valuesofRubatto(2002),Whitehouseand
Platt(2003)andRubattoandHermann(2007)arepresentedforcomparison.
withthoseobtainedbyID-MC-ICPMS(1.9–2.4)withinerror(Fig.5a),
indicatingthattheNdisotopicanalysesinthisstudyareessentially
unaffectedbyMREE-richinclusions,likelyduetoefficientmineral
pickingand/orconcentratedH
2
SO
4
sistentHf
concentrationsof0.10–0.13ppmwithinsinglegrainswiththose
(0.11–0.13ppm)byID-MC-ICPMSindicatestheHf-richphaseswere
essentiallyremovedduringdigestion(Fig.5b).TheoverallLu
concentrationslightlyskewstowardsthegarnetrimbecauseofthe
,theouter
Table3
SIMSSm,Nd,HfandLuconcentrationprofilesofthegarnetsinFigs.4and5.
(ppm)
Rim
Li
Sr
Y
Hf
La
Ce
Pr
Nd
Sm
Eu
Gd
Dy
Er
Yb
Lu
0.93
0.10
45.6
0.11
0.01
0.04
0.01
0.39
0.45
0.27
1.85
5.68
3.74
4.10
0.90
1.14
0.13
46.8
0.13
0.02
0.05
0.02
0.33
0.36
0.27
1.96
5.86
4.13
4.18
0.91
0.88
0.12
46.6
0.12
0.02
0.05
0.03
0.28
0.38
0.27
1.75
5.58
4.04
4.01
0.88
0.84
0.12
47.3
0.12
0.01
0.06
0.02
0.38
0.44
0.28
1.80
6.18
4.25
3.86
0.84
0.89
0.10
46.4
0.11
0.00
0.05
0.02
0.35
0.47
0.30
1.85
5.87
4.23
4.23
0.84
0.98
0.10
47.1
0.11
0.00
0.04
0.02
0.27
0.41
0.24
1.78
5.84
4.16
4.11
0.89
0.75
0.10
48.3
0.12
0.01
0.04
0.02
0.22
0.48
0.28
1.85
5.79
3.76
4.49
1.13
0.52
0.12
50.0
0.12
0.01
0.04
0.02
0.28
0.45
0.28
1.84
6.19
4.15
4.34
1.15
0.99
0.11
52.0
0.12
0.01
0.05
0.02
0.34
0.45
0.25
1.93
6.46
4.65
4.97
1.28
0.58
0.12
53.5
0.10
0.01
0.03
0.02
0.31
0.41
0.30
1.82
6.40
4.99
5.19
1.26
0.69
0.13
53.1
0.11
0.01
0.04
0.03
0.27
0.34
0.29
1.57
5.50
4.53
5.19
1.26
0.87
0.10
55.3
0.10
0.01
0.04
0.02
0.41
0.33
0.24
1.92
6.91
4.98
5.65
1.33
0.67
0.11
54.6
0.10
0.02
0.05
0.02
0.28
0.42
0.25
1.69
6.09
4.63
5.10
1.32
Core
0.75
0.10
57.8
0.10
0.01
0.03
0.02
0.26
0.41
0.22
1.53
6.40
5.20
5.69
1.42
Cpx
22.1
33.5
0.92
0.41
0.02
0.12
0.03
0.36
0.31
0.22
0.65
0.26
0.06
0.12
0.01
tal./Lithos110(2009)327–342333
/NdversusNdandLu/:data
:dataobtainedbyion
—wholerockbybomb-digestion,savWR—wholerockby
arsforbothIMSandIDmethodsaresignificantlysmallerthan
thesymbols.
y-calibratedthermobarometerisdefinedbythethree
reactionsof3Celadonite+1Pyrope+2Grossular=3Muscovite+
6Diopside,2Kyanite+3Diopside=1Pyrope+1Grossular+2Quartz,
and3Celadonite+4Kyanite=3Muscovite+1Pyrope+
intersectionpointof2.2GPaand620°Cisdefinedandtherefore
independentofcommonly-usedFe–
offersanadvantagewithregardstogarnet–clinopyroxene,whichis
pronetoretrogradereactionsandproblemsstemmingfromferric
ironestimationofomphacite(Lietal.,2005).Resultsareplotted
eereactions
andintersectionpointsareshownaccordingtoprogramsofcalibrations
1–5inFig.6.
isotopicdata
TheOisotopecompositionsofmineralsforthetwoeclogitesare
iredwithquartzforisotopegeothermo-
metry,garnet,omphacite,phengite,kyanite,zoisiteandamphibole
yieldtemperaturesof620±29,563±35,567±43,508±31,404±28
and685±39°CforeclogiteDB17,ethese
temperaturesareconcordantwithratesofOdiffusionandthusclosure
temperaturesinthemineralassemblagegarnet+omphacite+
kyanite+phengite+quartz(ZhengandFu,1998),representativeof
metamorphicpeakconditions,acontinuousresettingofOisotopes
inthedifferentmineral-pairsystemsisevidentduringcooling(Giletti,
1986;Eileretal.,1993;Chenetal.,2007).
Quartz–garnetpairsfromeclogiteDB17givetemperaturesof620±
29°C,whichareconsistentwiththosecalibratedbythe
THERMOCALC
–onsofpy+2gr+3cel=6di+
3mu;3di+2ky=py+gr+2q;and3cel+4ky=py+3mu+4qandintersectionpoints
areplottedaccordingtothecalibrationsofHollandandPowell(1998,latestupdated
dataset)insolidlinesandKroghRavnaandTerry(2004)equartz
equilibriumisalsoshown(HollandandPowell,1998).Abbreviations:alm—almandine,
gr—grossular,py—pyrope,cel—celadonite,mu—muscovite,di—diopside,jd—
jadeite,coe—aturesestimatedbyquartz–garnetoxygenisotope
thermometry(Zheng,1993),Ti-in-zirconandZr-in-rutilethermometries(Watsonet
al.,2006;Tomkinsetal.,2007)arealsoshown.
method,indicatingthatOisotopeequilibriumwasachievedand
preservedduringeclogite–faciesrecrystallization(Fig.7a).Thisisalso
evidencedbytheapparentequilibriumfractionationbetweengarnet
andomphacite(Fig.7b).Incontrast,equilibriumfractionationwasnot
calculatedquartz–amphibolepairtemperatureof685±39°Cis
distinctlyhigherthanthe508±31°Cfromthequartz–zoisitepair.
Becauseoxygendiffusioninamphiboleisfasterthaninzoisiteand
kyanite(ZhengandFu,1998),amphiboleexchangesoxygenisotopes
uently,the
Oisotopetemperatureincreasesforthequartz–amphibolepair,
whereasthequartz–zoisitetemperaturedecreasesrelativetothe
regard,theretrogrademetamorphism
ofamphibolite–faciesshouldtakeplaceatatemperaturebetween
∼685and∼508°therhand,thelowquartz–kyanitepair
temperature(404±28°C)couldbeinterpretedasaresultofinfluence
byretrogressivemetamorphismwithoutacleargeologicalmeaning.
Table4
OxygenisotopedataofmineralsfortheXiongdianeclogite.
SamplenumberMineralδ
18
O(‰)PairΔ
18
O(‰)T
1
(°C)T
2
(°C)
DB17Quartz12.86,12.66
Phengite10.26,10.14Qtz–Phn2.57567±43
Garnet8.83,8.85Qtz–Grt3.93620±29605±22
Omphacite9.64,9.56Qtz–Omp3.17563±35574±28
Zoisite9.31,9.43Qtz–Zo3.40508±31494±21
Amphibole9.83,9.60Qtz–Amp3.06685±39
Kyanite9.36,–Qtz–Ky3.41404±28
WR9.85,9.91
DB18Garnet9.74,9.59
Omphacite8.58,8.48Omp–Grt−1.14
WR10.15,9.99
T
1
andT
2
werecalculatedbasedonthetheoreticalcalibrationsofZheng(1993)and
Matthews(1994),respectively,withomphacite(Jd
45
Di
55
).Uncertaintyonthe
temperatureisderivedfromerrorpropagationoftheaveragereproducibilityof
±15‰forδ
18
O(‰)valuesinthefractionationequations.
tal./Lithos110(2009)327–342
Table5
LA–ICPMStraceelementanalysesofzirconandZrcompositionofrutilebySIMSintheXiongdianeclogite.
(ppm)
Label
DB17–1
DB17–2
DB17–3
DB17–4
DB17–5
DB17–6
DB17–7
DB17–8
DB17–9
DB17–10
DB17–11
DB17–12
DB17–13
DB17–14
DB17–15
DB17–16
DB17–17
DB17–18
DB17–19
DB17–20
DB17–21
DB17–22
DB17–23
DB17–24
DB17–25
Rutile–1
Rutile–2
Rutile–3
Rutile–4
Ti
5.95
5.68
4.54
5.33
8.01
6.05
6.55
6.63
6.72
4.96
7.66
6.56
5.29
7.20
6.04
6.04
4.04
4.51
7.47
9.08
4.24
5.09
4.74
4.94
6.45
267
301
313
332
Y
200
169
173
220
115
265
62
219
167
87
141
282
196
83
66
113
60
126
127
109
120
286
160
158
225
–
–
–
–
Nb
0.49
0.16
0.09
0.29
0.08
0.29
0.05
0.65
0.40
0.08
0.43
0.64
0.09
0.08
0.32
0.16
0.43
0.11
0.30
0.34
0.23
0.51
0.41
0.24
0.15
–
–
–
–
La
bD.L.
bD.L.
bD.L.
bD.L.
bD.L.
0.01
bD.L.
bD.L.
bD.L.
bD.L.
bD.L.
bD.L.
bD.L.
0.01
bD.L
bD.L.
0.01
bD.L
bD.L
bD.L
bD.L.
bD.L
bD.L
0.02
bD.L
–
–
–
–
Ce
0.68
0.55
0.83
1.30
0.58
1.42
0.41
1.70
0.99
0.51
0.69
1.72
1.94
0.63
1.08
0.86
0.47
1.53
0.81
1.84
1.06
1.43
1.15
0.70
1.12
–
–
–
–
Pr
bD.L.
bD.L.
0.01
0.01
bD.L.
0.02
bD.L.
bD.L.
0.01
bD.L.
bD.L.
bD.L.
0.02
0.01
bD.L
bD.L.
0.02
0.02
0.03
0.02
0.01
bD.L
0.01
bD.L
bD.L
–
–
–
–
Nd
0.07
0.10
0.13
0.11
0.13
0.43
0.06
0.14
0.20
0.09
0.11
0.23
0.38
0.10
0.09
0.18
bD.L
0.10
0.19
0.23
bD.L.
0.14
0.09
0.13
0.15
–
–
–
–
Sm
0.25
0.20
0.44
0.43
0.17
0.82
0.06
0.36
0.50
0.10
0.21
0.51
0.73
0.15
0.10
0.32
bD.L
0.33
0.31
0.40
0.26
0.50
0.35
0.19
0.39
–
–
–
–
Eu
0.16
0.13
0.25
0.19
0.12
0.36
0.05
0.05
0.22
0.07
0.10
0.12
0.28
0.09
0.10
0.14
0.09
0.17
0.11
0.10
0.09
0.11
0.05
0.05
0.19
–
–
–
–
Gd
2.63
1.53
2.92
2.55
1.47
4.33
0.86
2.14
2.96
0.88
1.78
3.42
3.76
1.02
0.97
1.54
0.84
2.35
1.45
1.71
1.35
3.68
1.36
1.52
2.83
–
–
–
–
Tb
0.98
0.78
1.07
1.18
0.57
1.71
0.31
1.02
0.93
0.46
0.66
1.35
1.30
0.37
0.37
0.58
0.35
0.75
0.64
0.56
0.55
1.50
0.79
0.73
1.17
–
–
–
–
Dy
13.8
11.6
13.2
15.5
7.89
19.5
4.21
15.3
12.7
6.14
9.12
19.9
16.0
5.71
4.76
7.84
4.32
10.0
9.23
7.35
8.11
20.3
10.9
10.1
16.7
–
–
–
–
Ho
6.29
5.42
5.36
6.67
3.42
7.99
1.88
6.67
4.94
2.81
4.21
8.44
6.46
2.60
2.05
3.61
1.71
4.13
3.80
3.04
3.57
8.57
4.60
4.45
7.03
–
–
–
–
Er
32.5
30.8
26.9
33.8
18.1
41.2
10.2
36.0
25.3
14.7
21.8
44.2
30.2
13.4
10.4
17.7
9.86
18.8
19.9
17.2
19.0
42.6
24.6
24.5
36.8
–
–
–
–
Tm
8.05
8.02
6.89
8.30
4.67
9.85
2.71
8.77
6.24
3.87
5.51
10.5
6.69
3.54
2.53
4.60
2.35
4.26
5.15
4.29
4.55
10.0
5.90
6.18
9.35
–
–
–
–
Yb
92
95
78
92
58
109
33
99
70
48
64
115
70
41
28
54
25
45
58
49
54
110
68
74
112
–
–
–
–
Lu
18.3
19.7
16.9
19.6
13.3
23.8
7.30
21.4
14.5
11.0
14.2
24.0
14.0
10.6
6.26
12.4
6.05
9.10
13.1
10.9
12.2
22.9
14.0
16.1
25.4
–
–
–
–
Hf
7238
9475
8353
8929
9119
8448
8095
11643
7502
8598
7951
10187
8629
8627
7159
8844
6342
7462
7728
9839
7701
8307
8379
7340
7787
–
–
–
–
Ta
0.37
0.20
0.10
0.23
0.08
0.18
0.07
0.36
0.22
0.09
0.39
0.24
0.10
0.13
0.21
0.16
0.19
0.11
0.16
0.21
0.24
0.14
0.17
0.06
0.16
–
–
–
–
Th
21.9
35.3
8.22
19.9
39.4
24.3
33.2
7.35
6.19
6.60
10.4
3.67
75.5
3.35
68.1
5.97
5.97
47.4
1.90
8.58
63.2
4.25
2.52
2.21
39.5
–
–
–
–
U
311
457
64.4
81.0
288
84.3
224
61.4
62.6
65.8
121
44.7
65.4
30.1
165
60.7
122
48.8
27.6
139
186
55.3
46.1
39.4
407
–
–
–
–
Th/U
0.07
0.08
0.13
0.25
0.14
0.29
0.15
0.12
0.10
0.10
0.09
0.08
1.15
0.11
0.41
0.10
0.05
0.97
0.07
0.06
0.34
0.08
0.05
0.06
0.10
–
–
–
–
Eu/Eu⁎
0.62
0.73
0.66
0.55
0.71
0.58
0.65
0.18
0.56
0.75
0.49
0.29
0.51
0.69
1.02
0.62
–
0.58
0.47
0.35
0.44
0.24
0.20
0.27
0.56
–
–
–
–
onology
Anoxygenisotopestudyofisochronmineralscanpotentiallyprovide
acriticaltestforthevalidityofmineralSm–Ndchronometers(Zheng
etal.,2002;Xieetal.,2004).Takingintoaccountthedisequilibrium
oxygenisotopefractionationbetweengarnetandomphaciteoftheDB18
eclogite,whichimpliesSm–Nddisequilibria,furthergeochronological
analysisontheDB18eclogitewasnotexecuted.
-ICPMSU–PbisotopeandREEdata
ThezirconsfromtheDB17eclogitearecolourlessandtransparent
curasfinetomedium
grainedcrystals(20–150μmindiameter),withlength/widthratiosof
1:1–2.5:1,rcons
showaCL-darkcoresurroundedbyanovergrowthrimwithweakCL
(Fig.8).Garnetandphengiteinclusionswerefoundwithinzircon,
netincludedinzirconhashigher
MnOandlowerMgOthanthatofthematrix(Fig.3d),usingtheserial
polishingstrategy(Chengetal.,2008b).Phengiteinclusionswerenot
analyzedduetoaninadequatepolishingprocedure.
TwentyfiveLA-ICPMSanalysesyieldedthreegroupsofweighted-
mean
206
Pb/
238
Uagesat315±5Maforsevenanalyses(MSWD=2.2;
groupA),373±4Mafornineanalyses(MSWD=1.1;groupB)and
422±7Mafornineanalyses(MSWD=2.3;groupC)(Fig.8;Table6).
LargebutoverlappingvariationswerefoundinbothUandThcontents
of122–457ppmand6–68ppmforgroupA,39–186ppmand2–
63ppmforgroupB,28–288ppmand2–76ppmforgroupC,
respectively(Table5).GroupAanalyseshavelowTh/Uratiosof0.05–
0.15exceptforonepoint(0.41).Th/Uratiosof0.05–0.34and0.07–
1.16wereobtainedforgroupBandCanalyses,
correlationbetweenU,ThorTh/Uratiosandagewasobserved
(Fig.9),norwerethereanysystematicdifferencesingrainsizeand
heless,the
groupCanalysesarepredominantlyinthecores,andgroupAages
distinguishthemselvesbyhigherUcontentsandgenerallylowerTh/U
izedREEpatternsforthethreegroupsaresimilarand
owrelativeHREE-enrichmentandsmall,both
negativeandpositiveEuanomalies(Fig.4a).Nosystematiccorrela-
r,theREEsare
largelydepletedfromcoretorimwithinasinglezircon.
–HfandSm–Ndisotopicdata
Weanalyzedhandpickedseparatesofgarnet,omphaciteandthe
wholerock(seesummaryofisotopicresultsinTable7andFig.11).The
parent/daughterratiosofLu/HfandSm/Ndforgarnetsare6.9–8.5and
1.9–2.4,suggestingthatgarnetfractionatesLufromHfmorestrongly
thanSmfromNd,whichisconsistentwithexperimentalpartition
coeffi,Greenetal.,2000).Thethreegarnetfractionshavelow
Ndconcentrations(0.22–0.39ppm)and
147
Sm/
144
Ndratiosof∼1.4
(Table7),comparabletotheNdcontents(0.22–0.41ppm)andtheSm/
Ndratios(0.8–2.2)acrosssinglegarnet(Fig.5a).Theconsistencyofbulk
andinsituSm/Ndresultssuggeststhatthehandpickedbulkfractions
arelargelyfreeofMREE-enrichedinclusionsinisotopicdisequilibrium
fractionshaveratherlowHfcontentsof
∼0.1ppm,producinglesspreciseHfisotopeanalysesthanthewhole
valueiswithintherangeoftheinsitudata,contamination
nificantlylowerLu/Hf
ratiosandhigherHfconcentrationsofthebomb-digestedwholerocksas
comparedtoSavillex-digestedsplitsareduetothedissolutionofzircon.
IsochronswereconstrainedbySavillex-digestedwholerock,
bomb-digestedwholerock,garnet,kyaniteandomphacitealiquots.
Thethreegarnetfractionscombinedwithomphacite,kyanite,and
twowholerocksyieldaLu–Hfageof268.9±6.9Ma(MSWD=27)
withaε
Hf
(t)=+8.2andacorrespondingSm–Ndageof271.3±
5.3Ma(MSWD=8.6)withaε
Nd
(t)=+rornotthe
bomb-digestedwholerockshouldbeincludedintheisochron
regressionsdependsonwhetherthezirconinthatsamplewasin
ingthebomb-digested
wholerockimprovestheprecisionoftheregressionandyields
indistinguishableinitialisotopicvalue,suggestingthatbulkzircons
areco-geneticwiththepeakmetamorphicassemblage,althoughthe
mucholderzirconU–Pbagesappeartonotfavorthisinterpretation.
tal./Lithos110(2009)327–342335
rmplotforoxygenisotopefractionationsbetweenquartzandother
mineralsfortheXiongdianeclogitefromthewesternDabie(a).Oxygenisotope
fractionations(Δ
18
O)δ
18
Ovaluesinthe
Xiongdianeclogites(b).Notethatthesamplesbeyondthegreydomainareoutof
oxygenisotopicequilibriumandthelimitedrangeofδ
18
O,indicatingtheirsimilarpre-
onationparametersAareafterZhengetal.
(2003)withomphacite(Jd
45
Di
55
).Ky—kyanite;Phen—phengite;Omp—omphacite;
Zo—zoisite;Grt—garnet;Amp—amphibole.
–Arisotopicdata
Thephengiteandamphibolemulti-grainlaserstep-heating
analysesyieldedinhomogeneouslyreleasedexcess
40
Arwithnon-
interpretabletotalfusionagesof548.8±1.6and861.7±2.6Ma,
respectively(Fig.11),whichareanomalouslyolderthantheages
obtainedbyU–Pbzirconages(Fig.8)andLu–HfandSm–Ndmineral
isochronages(Fig.10).Extremelyhighinitial
40
Ar/
36
Arratiosof11282
and4471areobtainedforphengiteandamphibole,respectively,
indicatingthepresenceofexcess/inherited
40
ybe
inheritedfromtheprotolith(Scaillet,1996)orberelatedtosecondary
fluidactivity(DeJongetal.,2001),fluidinclusions(Giorgisetal.,
2000),diffusionofexcessargonthroughtheminerallattice(Reddyet
al.,1996)orincorporationinsolidinclusions(Bovenetal.,2001).The
excess
40
ArinphengitefromUHPeclogitesintheSuluorogenwas
interpretedasinheritedfromtheprotolith(Lietal.,1994;Giorgis
etal.,2000).
sion
c-typeprotolith
ThehighSiO
2
(52–58%)contentsoftheXiongdianeclogite
resemblethoseofbasalticandesiteandaredistinctfromthemajor
basalticorgabbroiceclogitesacrosstheDabieOrogenicBelt.
Petrologicevidenceofproposedmetasomaticorigin(Jahnetal.,
2005)hCr(430–1118ppm)andNi(88–
247ppm)concentrationsdonotfavoranislandarcbasaltorandesite
r,thenegativeNbandZranomalies(Fig.2b)aretypical
ngdianeclogitesaredistinguishedfromthe
majorityofeclogitesintheDabiebyhighlypositiveinitialε
Nd
(t)and
ε
Hf
(t)values(Lietal.,2001;Fuetal.,2002;Jahnetal.,2005;Fig.10).
Themajorandtraceelementcontentsandthustheelementratiosof
theXiongdianeclogite,suchasBa/Nb(11–729),U/Th(0.3–2.5),and
Pb/La(1.0–9.0),erseelementandisotope
featuresappeartoarguethattheprotolithoftheXiongdianeclogites
wasatransitionaltypebasaltfromormixtureofislandarcandoceanic
crust,whichwasderivedfromthedepletedmantlewithlittle
tion,theoxygenisotope
data(Fuetal.,2002;Jahnetal.,2005;Table4)indicatethatthe
eclogiteprotolithexchangedisotopicallywithancientseawaterprior
toplatesubductionatlowtemperatures,whichisconsistentwiththe
high
87
Sr/
86
Srratios(Jahnetal.,2005)andcontrastsstronglywiththe
majorityofeclogitesfromtheDabieorogen(Zhengetal.,2003).
ThenewzirconU–Pb,garnetLu–HfandSm–Ndages,togetherwith
phengiteandamphiboleAr–Arresultspresentedhere,raiseimportant
questionsregardingthemetamorphichistoryoftheXiongdianeclogites
fromthewesternDabieorogen.
5.2.U–Pbageinterpretation
ZirconinHPmetamorphicrockscanpreserveinheritanceand
crystallizeatdifferentmetamorphicepisodesduringsubductionand
exhumationduetoitstemperatureresistanceandchemicalrobust-
r,theassumptionthatazirconU–Pbagecorrespondsto
peakmetamorphicPTconditionsrequiresverificationbyindependent
methods,suchasshapeandinternalstructure,chemicalcomposition/
elementalratio(HoskinandBlack,2000;Rubatto,2002;Bingenetal.,
2004;Wuetal.,2006),PT-indexedmineralinclusions(Hermannetal.,
2001)andgeothermometers(Watsonetal.,2006).Nevertheless,the
linkbetweenpetrologic,mineralchemical,microstructuralandzircon
agewithaparticularmetamorphicepisodeoftenremainsambiguous.
Threegroupsofweighted-mean
206
Pb/
238
Uagesat315±5Ma
(groupA),373±4Ma(groupB)and422±7Ma(groupC)were
obtainedfortheXiongdianeclogite(Fig.8).Thereisnosignificant
U–PbisotopicanalysesandrepresentativeCLimagesofzirconfromthe
icaluncertaintiesarewithin1σ.
tal./Lithos110(2009)327–342
Table6
ZirconU–PbisotopicdataobtainedbyLA-ICPMSfortheXiongdianeclogite.
SpotElement(ppm)
Th
DB17-1
DB17-2
DB17-3
DB17-4
DB17-5
DB17-6
DB17-7
DB17-8
DB17-9
DB17-10
DB17-11
DB17-12
DB17-13
DB17-14
DB17-15
DB17-16
DB17-17
DB17-18
DB17-19
DB17-20
DB17-21
DB17-22
DB17-23
DB17-24
DB17-25
22
35
8.2
20
39
24
33
7.4
6.2
6.6
10
3.7
76
3.4
68
6.0
6.0
47
1.9
8.6
63
4.3
2.5
2.2
39
U
311
457
64
81
288
84
224
61
63
66
121
45
65
30
165
61
122
49
28
139
186
55
46
39
407
Th/U
0.07
0.08
0.13
0.25
0.14
0.29
0.15
0.12
0.10
0.10
0.09
0.08
1.16
0.11
0.41
0.10
0.05
0.97
0.07
0.06
0.34
0.08
0.05
0.06
0.10
Isotopicratios
207
206
Age(Ma)
207
235
Pb/
Pb
±1σ
0.00151
0.00095
0.00227
0.00178
0.00149
0.00178
0.00125
0.00212
0.00211
0.00413
0.00183
0.00529
0.00362
0.00585
0.00160
0.00435
0.00317
0.00300
0.00533
0.00160
0.00150
0.00296
0.00357
0.00343
0.00115
Pb/
U
±1σ
0.00967
0.00676
0.02080
0.01472
0.01342
0.01433
0.00859
0.01716
0.01911
0.03767
0.01667
0.04191
0.03479
0.04722
0.01088
0.04193
0.02179
0.02784
0.05083
0.01022
0.01225
0.02718
0.02787
0.02746
0.00688
206
238
Pb/
U
±1σ
0.00059
0.00058
0.00092
0.00075
0.00081
0.00074
0.00058
0.00077
0.00086
0.00130
0.00086
0.00132
0.00120
0.00140
0.00061
0.00110
0.00083
0.00098
0.00148
0.00054
0.00068
0.00098
0.00097
0.00091
0.00050
208
232
Pb/
Th
±1σ
0.00018
0.00043
0.00124
0.00054
0.00058
0.00044
0.00040
0.00110
0.00137
0.00245
0.00109
0.00345
0.00051
0.00481
0.00029
0.00278
0.00333
0.00045
0.00415
0.00018
0.00038
0.00214
0.00337
0.00321
0.00015
207
206
Pb/
Pb
±1σ
64
40
92
69
61
69
51
86
84
165
71
210
139
239
67
176
105
87
173
69
39
93
111
107
48
207
235
Pb/
U
±1σ
7
5
14
10
9
10
6
12
13
25
11
29
23
33
8
29
16
18
33
8
9
18
20
19
5
206
238
Pb/
U
±1σ
4
4
6
5
5
4
4
5
5
8
5
8
7
9
4
7
5
6
9
3
4
6
6
6
3
0.05348
0.05363
0.05507
0.05702
0.05500
0.05678
0.05516
0.05518
0.05584
0.05580
0.05709
0.05598
0.05729
0.05483
0.05403
0.05510
0.05247
0.05756
0.05571
0.05361
0.05503
0.05464
0.05546
0.05600
0.05482
0.37490
0.38067
0.51114
0.47704
0.50143
0.46201
0.38108
0.45117
0.51129
0.51942
0.52685
0.45189
0.55943
0.45021
0.37030
0.44942
0.36875
0.54419
0.54069
0.36662
0.45957
0.51116
0.44233
0.45634
0.37286
0.05084
0.05148
0.06732
0.06067
0.06612
0.05902
0.05011
0.05930
0.06641
0.06751
0.06693
0.05855
0.07082
0.05955
0.04971
0.05930
0.05098
0.06858
0.07040
0.04960
0.06059
0.06787
0.05786
0.05911
0.04933
0.01592
0.01925
0.02121
0.01903
0.01715
0.01721
0.01637
0.01848
0.01978
0.03321
0.02228
0.02891
0.02300
0.03210
0.01484
0.02284
0.05295
0.02209
0.03778
0.01552
0.01965
0.02612
0.02359
0.02143
0.01540
349
356
415
492
412
483
419
420
446
444
495
452
503
405
372
416
306
513
441
355
413
398
431
452
405
323
328
419
396
413
386
328
378
419
425
430
379
451
377
320
377
319
441
439
317
384
419
372
382
322
320
324
420
380
413
370
315
371
414
421
418
367
441
373
313
371
321
428
439
312
379
423
363
370
310
differenceinU,ThandREEcontentsforthegrainsofthethreeage
elationbetweenU,ThorTh/Uratiosandagesandno
systematiccorrelationbetweenREEpatternsandagescouldbefound.
AllthezircondomainsshowparallelandlargelyoverlappingHREE-
enrichment,implyingthatzircongrowthisnotincommunication
withgarnetand/orzirconformedinan‘open’system,preventingany
changeinzirconcompositionduetothecrystallizationofgarnetor
tion,thecalculatedzircon-garnetREEdistribu-
tionappearstosuggestthatallthezircondomainsdidnotattainREE
equilibriumwiththematrixgarnets(Fig.4b),eventhoughthereis
uncertaintyoverwhichD
REE
(Zrn/Grt),
Harleyetal.,2001;Rubatto,2002;WhitehouseandPlatt,2003;
RubattoandHermann,2007).Moreover,Ti-in-zircongeotherm-
ometercalculationsyield667–706°CforgroupAzircondomains,
688–732°CforgroupBand671–718°CforgroupC,muchhigherthan
thepetrologicestimatepeakeclogite–faciesmetamorphismof
∼620°hattheTiinzirconisinequilibriumwithrutile,all
kofa
flatREEpattern,thesimilargrowthtemperature,andtheindistinct
Th/Uratiosappeartoargueforamagmaticoriginforallthreegroups
r,alloftheolderages(groupC)comefromthe
coresindarkCLwithplagioclaseinclusions,whiletheovergrowthrim
positionsofthe
garnetinclusionsinzirconmimicthoseofthematrixgarnetcores,
distinguishingthemfromthematrixgarnetrimbyahigherMnO
content(Fig.3d).Therefore,the315±5Maageclustersareprobablya
maximumestimateofpeakeclogite–faciesmetamorphismandlikely
skewedtoearliergarnetgrowthontheprogradeP–rce
ageswithaweighted-meanvalueof422±7Mamayrepresentan
arentconcordantzircon
datesof∼370Macouldhavebeenproducedbypartialrecrystalliza-
,Pidgeon,1992),orrepresentearlierprogradeorasecond
ssicageswererecordedinoursample,reflecting
eitherincompletepreservationorinsufficientinvestigation.
Therefore,itmostlikelythatthepeakmetamorphictemperature
fortheXiongdianeclogitewasnohigherthan700°C,asestimated
fromTi-in-zirconandZr-in-rutile,andthe∼620°Cisaretrograde
temperature,asrecordedinthegarnetriminoxideionsandoxygen
equilibriumzircon-garnetREErelationshipsobserved
intheXiongdianeclogiteindicatethattheeclogite–facieseventthat
ledtothemajorityofgarnetformationandthustheomphacite–garnet
assemblageisnotthesameonethatledtothechemicalmodification
metamorphiceventsthatformedandlaterpartiallyreplacedthe
garnetarenotregisteredinthezirconagedataasobtainedfrom
modifigeochronologythereforerecordsthe
later,post-peakcoolinghistory.
–HfandSm–Ndageinterpretation
TheconsistentgarnetisochronLu–HfandSm–Ndagesofca.
270Mamostlikelyreflectaresettingeventwhenfluid-assisted
recrystallizationofgarnetoccurredduringHPeclogite–faciesmeta-
lydatingtheeclogiticassemblageofgarnetand
omphaciteisfarmorestraightforwardthanfortheaccessoryminerals,
suchaszirconandmonazite,whichmaynotreflecttheonlyeclogitic
r,theacquiredagedeterminedusinggarnet
ationbetweenzircon
206
Pb/
238
UageandTh/UratiofortheXiongdianeclogite.
tal./Lithos110(2009)327–342
Table7
Lu–HfandSm–NdisotopedatafortheXiongdianeclogite.
Sample
bombWR
savWR
Grt1
Grt2
Grt3
Omp1
Omp2
Lu(ppm)
0.242
0.193
0.917
0.927
0.904
0.007
0.007
Hf(ppm)
2.20
0.362
0.113
0.110
0.131
0.448
0.448
176
337
Lu/
177
Hf
176
Hf/
177
HfSm(ppm)
1.21
1.21
0.920
0.541
0.532
0.250
0.272
Nd(ppm)
3.97
4.00
0.392
0.222
0.285
0.826
0.941
147
Sm/
144
Nd
143
Nd/
144
Nd
0.0156
0.0756
1.148
1.201
0.9765
0.0023
0.0023
0.282435±8
0.283216±23
0.288512±17
0.288973±17
0.287722±23
0.282892±9
0.282773±10
0.1836
0.1832
1.419
1.474
1.130
0.1832
0.1749
0.512792±9
0.512798±6
0.514989±22
0.515083±21
0.514426±16
0.512765±9
0.512738±9
bombWR—wholerockbybombdigestion,savWR—wholerockbysavillexdigestion,Grt—garnet,Omp—omphacite.
Decayconstantsusedfor
147
Smand
176
Luis6.54×10
−12
yr
−1
and1.867×10
−11
yr
−1
(Schereretal.,2001;Söderlundetal.,2004).
Ageerrorsare95%confidencelevelandwerecalculatedusingIsoplotv.3.5(Ludwig,2003).Errorscalculatedforagesarebasedsolelyonexternalreproducibilityofspikedstandards
andwhole-rocksamples(errorsforindividualanalysesarenegligible):
147
Sm
/144
Nd=0.5%,
143
Nd/
144
Nd=0.0035%,
176
Lu/
177
Hf=0.5%,
176
Hf/
177
Hf=0.01%.
Lu–Hfand/orSm–Ndgeochronologydependsonhowaccuratelythe
analyzedgarnetseparatesreflectthecompletegarnetchemistry
rmore,inordertospecifythegeological
meaningsoftheseages,thegarnetgrowthhistoryandmetamorphic
pathmustbeunraveled.
Biasesproducedduringmineralseparationwillresultinbiased
ages(Chengetal.,2008a).Ideally,thoroughanalysesofparent-
daughterzoningprofilesforgarnetsofdifferentsizesandthecrystal
sizedistributionofthegarnetgrainswouldclarifytheoveralleffect.
However,er,
althoughX-raycomputedtomographyorserialsectioningmaybe
usedtolocatetheexactgeometriccentersofthegarnetporphyro-
blasts,suchmethodsdonotnecessarilyidentifygarnetnucleation
centers,
approachisnotpracticalforoursamples,inwhichgarnetsarelargely
polycrystalswithmultiplenucleationcenters(Fig.3).Inaddition,
zoningprofilesofasinglegarnetmaynotberepresentativeofmulti-
ore,constraintsfrominsitu
–NdandLu–—garnet,Omp—omphacite,savWR—whole
rockbySavillex-digestion,bombWR—arsare
significantlysmallerthanthesymbols.
zoninganalysesareusefulonlyasguidestowhateventanisotopicage
heless,theclosuretemperatureforthespecific
geochronologicalsystemissubjecttovariousfactors,includinggrain
size,coolingrate,mineralmodeandfluid(Dodson,1973;Chenetal.,
2007).Linkinganisotopicagetoaspecificgarnetgrowthepisodeis
rtodeterminewhethertheseagesreflect
progradegarnetgrowth,peakmetamorphism,orcooling,the
observedelementalzoningpatternsingarnetmustbeinterpreted.
Thepartially-preservedgrowthzoninginmajorelementsandSm,
Nd,LuandHfingarnetporphyroblastsfortheXiongdianeclogite
(DB17)indicatethatpotentialdiffusiveresettingofagesisnot
significantinthissample,pointingtoalowerpeakmetamorphic
temperaturethanLu––Hfageof268.9±6.9Ma
thereforemostlikelyapproximatesgarnetgrowthonaprogradeP–T
ghdatingtheprograde-zoning-preservedgarnetsdoes
notnecessarilyproduceanagethatisskewedtowardstheearlystage
ofprogradegarnetgrowth,,
Lapenetal.,2003),itmaybiastowardsaparticularmetamorphic
episode(Chengetal.,2008b).
Thegarnethasaninclusion-richcoresurroundedbyasharply
definedinclusion-freeidiomorphicrim,indicatingchangingcondi-
tionsduringgrowth,suchasthediffusionandcrystalgrowthrates.
Thisfeaturemayalsobeduetoachangeintheporphyroblast-forming
reaction,actionbecameactive,consumingthemineralthat
formsinclusions(PasschierandTrouw,1996).Whateverthecause,the
ghgarnet
porphyroblastsareoftenisolatedfromeachother,grainsthat
impingedorcontactedeachotherinlategarnetgrowtharerecognized
asclustersofmultiplegrains(Fig.3).Theformationandprevalenceof
polycrystalsimpliesthatgarnetnucleiimpingedoneachotherand
r,theabsenceofroundededgesonsmallgarnet
crystals,whichwouldbeexpectedgiventhecoarseningoflargegarnet
grainsattheexpenseofsmallergrains,andtherestrictedwidth(200–
250μm)oftheinclusion-freeovergrownrimsregardlessofgarnetsize,
soopposesthesize-
ore,coalescence(Ostwald
ripening)waslikelyadominantfeatureduringearlygarnetgrowth
otonous
decreaseinMnOandHREEspro
files
fromcoretorimsuggeststhatthe
thermallyaccelerated,diffusion-controlled(TADC)nucleationand
growthmechanism(Carlson,1999)wasnotnecessaryasamechanism
forgarnetgrowth,andfavorsasurface-kinetics-controlledgrowth
mechanismwithconstantradiusgrowthrateforthelategarnet
growth(Chengetal.,2008b).Nevertheless,flatMnOprofilesforsmall
garnetgrains,andtheidenticalchemistryforinclusion-freesmall
garnetswithlargegarnetrims,indicatethatmostsmallgarnetgrains
andtheouterrimsofthelargegarnetporphyroblastsformedina
distinctgrowthepisoderatherthanacontinuationoftheearlier
growthstageofthelargegarnetcores(Chengetal.,2009).
Electronbackscatterdiffraction(EBSD)analysesofthesepoly-
crystals,presentedinaseparatestudy(Chengetal.,inpreparation),
revealthatgarnetpolycrystalsarecomprisedoftwoormoredistinct
tal./Lithos110(2009)327–342
polygonalfabricofgarnetpolycrystalsmaybeformedbyfluid-aided
staticrecrystallizationinresponsetograinboundaryareareduction.
Theoccurrenceofomphaciteinthetransitionzonefrominclusion-
richtoinclusion-freeingarnetimpliesthattheouterrimdidnotgrow
eralseparationbiasedthe
bulkLucompositionstowardsthoseofthegarnetrim(Fig.5b),likely
ore,TheLu–Hfageof
268.9±6.9Maisskewedtoreflectingthetimingofinclusion-free
garnetgrowthratherthanearlygarnetgrowthoranaverageestimate
respondingandidenticalSm–Nd
ageof271.3±5.3Maisskewedtowardslatergarnetgrowthbecausea
muchgreaterproportionofSmispresentwithintheoutershells
heeclogitic–facies
P–Tconditionsestimatedfromthegarnetrimcompositionof2.2GPa
and621°C,ca.270Mashouldbeaminimumestimateoftheendof
peakmetamorphism,andlikelydatesearlyexhumationafterpeak
pressuremetamorphism.
EclogitesthatrecrystallizedaboveLu–HfandSm–Ndclosure
temperaturesforlongenoughre-equilibratedthetwochronometric
systemswiththematrix,andre-initializedthetwogeochronometers.
DifferencesintheLu–HfandSm–Ndages,therefore,shouldprovide
insightintothetime-scalesofsuccessivecoolingratherthanskewsto
nticalLu–HfandSm–Ndagesforthe
Xiongdianeclogiteprobablyonlyrecordashortperiodoffinalgarnet
growthanddonotreflectthecompletegarnetgrowthhistoryas
servedMnOandLuzoning
suggestthattheblockingtemperatureoftheLu–HfandSm–Ndsystems
intheXiongdianeclogiteareapparentlygreaterthanthemetamorphic
temperatureof∼620°essscatterobservedinthegarnetLu–Hf
regressionline(MSWD=27)deriveseitherfromincompleteHfisotope
equilibrationduringeclogite–faciesmetamorphismand/orresultsfrom
betterseparationofdifferentstagesofgarnetgrowth(t
mineralseparationactuallyresultsintheworststatistics)ifgarnet
growthoccursoverMyrtotensofMyr(Kohn,2009).
Thequartz–garnetpairsgiveaconsistentOisotopetemperatureof
∼620°Cwithapetrologicestimateof∼621°CbytheTHERMOCALC
method,indicatingthatOisotopeequilibriumwasachievedand
ervationofhigh-salinityaqueousinclusionsin
epidotecoexistingwithsolidphasesindicatesthatinsolubledaughter
mineralsweretrappedintheHPmetamorphicfluid(Fuetal.,2002),as
shownbygarnetandomphaciteinclusionsbutnotamphibole(Jahn
etal.,2005),incontrasttothelow-salinityaqueousretrogradefluid.
Therefore,weproposethattheformergarnetgrainsimpingedon
eachother,coalescedbytheaidofhigh-salinityaqueousfl
uid,largely
resulting
fluidisnotonlyan
importantmediumthatfacilitatedgarnetovergrowthbutitalso
affectedtheLu–HfandSm–Ndisotopere-equilibrationduringHP
eclogite–faciesrecrystallization,resultinginlargelyconsistentiso-
chronages.
–Arageinterpretation
TheanomalousNeoproterozoicphengiteandamphibole
40
Ar/
39
Ar
agesaregeologicallymeaninglessandwereattributedtoexcess/
40
Arhasbeenwelldocumented
for
40
Ar/
39
,Lietal.,
1994;ArnaudandKelley,1995).The
40
Ar/
39
Aragedeterminationson
thesephengiteandamphiboleseparatesapparentlyhavebroadand
concordantageplateaus(Fig.11).However,theundefinedisochron
andtheextremelyhighinitial
40
Ar/
36
Arratiosof11282and4471
deviatesignificantlyfromthatofthemodernatmosphere,suggesting
abundantexcess
40
Wijbrans(2006)introducedtheupper
andlowerreferencelinesintheAr–Arnormalisochronplotto
constraintheprotolithandmetamorphicages,r,
thebasisofthereferencelinesisgeologicallyproblematicandsuch
referencelinescannotbedefi
agesof555.25±6.19and489.19±15.17Ma,correspondingtothe
upperandlowerreferencelinesforthephengite,aresignificantlyolder
logicalsignificanceoftheolderreference
heless,alltheAr–Aragesarehundredsof
millionsofyearsolderthantheoldestzirconU–Pbageaswellasthe
Lu–HfandSm–ges,therefore,aregeologically
meaningless,althoughthesourceofexcess
40
Arhasyettobe
edinsituintra-grainprofilingofphengitesand
amphibolesandotherco-geneticmineralsmayshedlightonthisissue.
icalimplications
Thesymmetricalthermobaricpattern(Liuetal.,2006b),in
conjunctionwithstructural(Hackeretal.,1998)andconsistent
Triassicgeochronologicaldata(Liuetal.,2004a;Liuetal.,2006a;Wu
etal.,2008)formajorityofeclogitesfromwesternDabie,demon-
stratesthatthewesternDabiebelongstothesameHPsliceoverlying
theUHPsliceandisacoherentpartoftheTriassicDabieandSulu.
Threegroupsofweighted-mean
206
Pb/
238
Uagesatca.315,ca.373and
ca.422MaoftheXiongdianeclogitearebroadlyconsistentwith
previouslyreportedU–Pbzirconages(Jianetal.,1997,2001;Sunetal.,
2002;Gaoetal.,2002).Incontrast,coupledLu–HfandSm–Nddates
insunclear
whethertheexacttimingofHPmetamorphismoccurredinthe
Ordovician(Jianetal.,1997,2001;Gaoetal.,2002),Carboniferous
(Sunetal.,2002;Ratschbacheretal.,2006)orTriassic(Gaoetal.,
2002),andwhethermultipleHPmetamorphiceventsareresponsible
forthespreadages(Jianetal.,1997,2001;Gaoetal.,2002;Sunetal.,
2002;Ratschbacheretal.,2006)orwhetherthePaleozoicagesare
essentiallymeaningless(Jahnetal.,2005).
Collectively,theagesofOrdovician,Silurian,Devonian,Carbonifer-
ousandTriassichavebeenrecordedintheU–Pbzircongeochronol-
ovician(Gaoetal.,2002)toSilurian(Jianetal.,1997,
2001;Gaoetal.,2002;Sunetal.,2002;thisstudy)U–Pbzirconage
clusterscanbereadilyinterpretedastheprotolithagebasedonthe
steepREEpatterns,negativeEuanomaliesandplagioclaseinclusions
(Figs.4and8).TheCarboniferousU–PbzirconageslikelydatetheHP
metamorphismbasedontheflatREEpatternsandtheHP-indexed
mineralinclusionswithintheanalyzedspotdomains(Sunetal.,
2002),andmayreflectHPmetamorphismduringaprogradepath
ratherthanthepeakconditionsbasedonthecompositionalsimilarity
betweenthegarnetinclusionandmatrixgarnetcore(Fig.3d).This
suggestsdecoupledgrowthbetweenzirconsandthematrixgarnet.
TheDevonian(Jianetal.,1997,2001;Gaoetal.,2002;Sunetal.,2002;
thisstudy)ageseitherreflectadiverseoriginoftheprotolithorjust
assicageapparentlymarksmajor
subductionacrossthewholeDabie–Suluorogenicbelt(Gaoetal.,
2002)andthuswitnessestheeffectoftheTriassiccontinental
r,numerousTriassicmuscovite
40
Ar/
39
Arages(Yeet
al.,1993;Xuetal.,2000;Ratschbacheretal.,2006)inthisareaand
Rb/Srmineral-whole-rockisochronages(Yeetal.,1993)appearto
argueforaTriassicoverprintingeventratherthandistinctHP
metamorphism(Gaoetal.,2002).Thesignificanceofbarroisite/
phengite
40
Ar/
39
Aragesofca.430–350Ma(Yeetal.,1993;Xuetal.,
2000)cannotbepracticallyinterpretedduetothesaddle-shaped
steppedheatingreleasespectrumandtheolderthanU–Pbzircon
.400MaRb/Srwhole-rockageislikelymeaningless
becauseofthelarge-scaleisotopicdisequilibrium(Jahnetal.,2005).
ThepresentLu–HfandSm–NddatingfillthePermiangapandare
interpretedtorepresentlategarnetgrowthduringdecompressionsoon
–Pbzirconageofca.315Ma
decoupledfromtheLu–Hf/Sm–Ndageofca.270Mabracketsthepeak
eclogite–er-
pretationthattheconsistentLu–Hf/Sm–Ndageofca.270Marepresents
theterminationofgarnetgrowthindicatesthateclogite–facies
tal./Lithos110(2009)327–342339
Fig.11.
40
Ar/
39
Aragespectraand
39
Ar
K
/
37
Ar
Ca
ofphengiteandamphibolecrystalsby
step-heatinganalysis.
metamorphismoccurredaslateas270Ma,andthusthemaximum
peakHPmetamorphismisbracketedbetweenca.315andca.270Ma.
Combinedwiththeminimumestimationoftheinitiationofcontinental
subductionofpriortoca.245Ma(Wuetal.,2006;Chengetal.,2008a),
ourdatafavoramodelofcontinuousoceanic-continentalsubduction:
oceanicsubductionstartedpriortoca.315Ma,reachingHPmeta-
morphicconditionsatca.315–270Ma,andsomeHProckswerescraped
offwithcontinuoussubductionduetocrustaldetachment,likethe
greenschist–faciesrocksinthenorthernmarginoftheDabie–Sulu
orogenicbelt(Zhengetal.,2005).Thehigh-grademetamorphicrocks
ncontinentalsubduction
startedpriortoca.245MaandreachedpeakHP/UHPconditionsduring
235–225Ma,followedbyfastexhumation,producingwidespread
eclogitefaciesmetamorphismthroughouttheDabie–
wholesubductionofoceanictocontinentalcrustspansabout100Myr
fromCarboniferoustoTriassic.
EclogitesintheHuwanmélangeshowacomplexoriginanddiverse
,Sunetal.,2002;Liuetal.,2004a;Jahnetal.,2005;
Liuetal.,2006b;Ratschbacheretal.,2006;thisstudy).TheXiongdian
eclogiteinthesouthernareahasanoceanic-basalttoisland-arcorigin
withouttectonicaffinitywiththeSouthChinaBlock,reachingpeakHP
metamorphicconditionsatca.315–orth,theHujiawan
eclogitebearsaSilurian–DevonianislandarcaffinityandsufferedHP
metamorphismatca.300Ma(Liuetal.,2001).Incontrast,the
Qianjinhepengeclogiteatthenorthernmarginhasitsoriginfromthe
SouthChinaBlockwithNeoproterozoicprotolithages(Sunetal.,
2002),showinganaffinitywiththeQinlingmicrocontinentwith
Paleozoicages(Liuetal.,2004a).TheHPmetamorphictimingofthe
QianjinhepengeclogiteisconstrainedtotheTriassic(Liuetal.,2004a),
consistentwiththemajorityofeclogitesfromwesternDabie.
TheoverallHuwanmélangehasaPermian–Triassiccoolingages
(Yeetal.,1993;Webbetal.,1999;Xuetal.,2000;Ratschbacheretal.,
2006).Inthisregard,weproposethattheHuwanmélangerepresents
amixtureofoceanicbasaltsandSouthChinaBlockbasement
materialsthatstucktogetherduringtheTriassicafterHPmetamorph-
boniferous–
PermianHPeclogites,ngdianeclogite,overlaidthose
Triassiceclogitesandwereexhumedandsuccessivelyexposedinthe
pothesisalsopredictsthatCarboniferous–Permian
HProcksanalogoustotheXiongdianeclogitemaybediscoveredtothe
southofwesternDabie.
sions
Thepresentstudyhelpsresolvesomeimportantquestions
concerningthetimingofoceanictocontinentalsubductionandthe
ngdianeclogiteinthewestern
partoftheDabieorogenyieldsconsistentLu–HfandSm–Ndisochron
agesofca.270Ma,recordingprocessesfrompeakHPmetamorphism
unctionwithzirconU–Pb
dates,theonsetofoceanicsubductionisconstrainedtothe
CarboniferousandpeakHPmetamorphismoccurredpriortoca.
nationofU
–Pb
zirconandLu–Hf/Sm–Ndgarnet
geochronologieswithinsituelementalanalysesallowsabetter
interpretationofthesenewradiometricagesandanimproved
understandingofthechronologyofsubduction-zonemetamorphism
ultsaddafurtherargument
infavouroftheviewthattheoceanicsubductionreachedHP
conditionsduringthelateCarboniferoustoPermianinWestDabie.
ThesignificanceoftheDevoniandatesisnotyetresolved;theyeither
indicateadiverseprotolithorreflectanearlierprogrademetamorph-
ductedoceanicbasaltswerelargelyconsumed,butafew
HPmetamorphicrocksreachedpeakconditionsnoearlythanca.
rescrapedoffofthedowngoingoceaniccrustbefore
ca.270Ma,stucktogetherwiththeTriassicHProcksandwere
adonotsupportthatthe
rall
oceanictocontinentalsubductioncouldspanaperiodaslongas
∼100Myr,butspecificepisodesofzirconandgarnetgrowthmayonly
occurinanarrowtimeintervalwithoutgeochronologicalregistration.
Acknowledgements
,wafortheirhelpwiththe
lediscussionswithH.L.
Qiu,
ightsof
reviewersIanBuick,GrayBeboutandananonymouswerehelpfulin
search
wassupportedbytheChinese‘973’project(2009CB825006),Program
forYoungExcellentTalentsinTongjiUniversity,COE-21programto
ra,NSFgrantsEAR-0609856andEAR-0711326toJeff
VervoortandsponsoredbyProgramofShanghaiSubjectChiefScientist
(08XD14042).
AppendixA
icalmethods
ockmajorandtraceelementanalysis
Wholerockmajorelementcompositions,alongwithCrandNi,
weredeterminedbyX-rayfluorescencespectrometer(XRF),onglass
beadsfluxedfrommixing∼100mgofpowderedsampleand∼5gof
Li
4
B
2
O
7
.Analyticalerrors(RSD%)were1–2%(1σ)
elementconcentrationsweredeterminedbyanAgilent7500cs
ICPMS,hostedattheInstituteforStudyoftheEarth'sInterior(ISEI),
OkayamaUniversityatMisasa,Japan,throughconventionalmethods
(MakishimaandNakamura,1997;Makishimaetal.,1999).Analytical
tal./Lithos110(2009)327–342
errorsfortraceelementsaregenerallybetterthan3%forhighfield
strength(HFS)elementsand5%forotherelements.
mineralmajorandtraceelementanalysis
Mineralmajorandtraceelementanalyseswereobtainedatthe
ISEI,OkayamaUniversityatMisasa,Japan,usingaJEOL8800electron
microprobeandCAMECAims5fsecondary-ionmassspectrometer.
-
mentaldetailscanbefoundinChengetal.(2007).Analyticalerrors
(RSD%)formajorelementswere1–2%(1σ)orbetterand5–10%(1σ)
stakenduringmicroprobeanalysesto
avoidmicroinclusionsandfracturesusingavisualstagesystem.
–HfandSm–Ndisotopeanalysis
Wholerockswerecrushedwithasteeljawcrusherandpartsofthe
rockchipswerepowderedinanagatemillwhileotherswerehand
pickedtoobtaincleanmineralseparatesunderabinocularmicroscope.
Amagneticseparatorwasnotusedsoastoavoidsplittingthegarnet
intodifferentmagneticfractions(Lapenetal.,2003)andbiasingthe
al
preparationsandSm/NdandLu/Hfisotopicanalyticalproceduresare
identicaltothoseofChengetal.(2008a),exceptthatconcentrated
H
2
SO
4
leachingofgarnetfractionswasperformedinthisstudyto
removephosphateinclusions(asrecommendedbyAnczkiewiczand
Thirlwall,2003),asphosphateinclusionswereobservedwithingarnet
porphyroblasts(Fig.3c).Lu–HfandSm–Ndisotopicdatawere
analyzedusingtheThermoFinniganNEPTUNEatWashingtonState
roducibilityof
149
Sm/
152
Sminthisstudywas
0.516908±0.000037(2σ;n=25).Theoverallexternaluncertainties
appliedtomeasureddataare0.5%for
176
Lu/
177
Hfor
147
Sm/
144
Nd,
0.01%for
176
Hf/
177
Hfand0.0035%for
143
Nd/
144
Nd,asencountered
–Hf
ageswerecalculatedusingthe
176
Ludecayconstantvalueof1.867×10
−11
(Schereretal.,2001;Söderlundetal.,2004).Lu–HfandSm–Nd
isochronswereproducedwiththeprogramIsoplot/Ex(Ludwig,2003)
witherrorsatthe95%confidencelevel.
U–Pb,REELA-ICPMSanalysis
Theseparatedzircongrainsfromtherocksamplesbymagneticand
heavy-liquidtechniqueswerethenpickedfromsievedfractionsunder
entativezirconsweremountedin
epoxyresinandpolisheddowntoexposegraincentresforcathodo-
luminescence(CL)ingwereobtainedbyscanning
electronmicroscopy(SEM)usinganFEIPHILIPSXL30SFEGinstrument
witha2minscanningtime,operatingatconditionsof15kVand
-ICPMSzirconU–PbanalysiswascarriedoutattheChina
ailedanalyticalprocedure
followsYuanetal.(2004).AGeoLas2005Mlaser-ablationsystem
equippedwitha193nmArF-excimerlaserinconnectionwithan
wasusedasthecarriergasto
enhancethetransporteffiicalspot
diameterwasaround35μsurementswereperformedusing
awereprocessedusing
rdsilicateglassNISTSRM610,withworking
valuesrecommendedbyPearceetal.(1996),wasusedtocalculateU
deproductionratewastunedtoless
than0.5%rageanalyticalerrorrangedfromaround10%
(1σ)forlightrareearthelements(LREE)toabout5%(1σ)fortheother
monPbcorrectionwascarriedoutusingtheEXCEL™
programofAndersen(2002),assumingt=270MafortimeofPbloss.
ThedatawereproducedwiththeprogramIsoplot/Ex(Ludwig,2003).
isotopeanalysis
Themineraloxygenisotopeanalysiswasconductedbythelaser
fluorinationtechniqueusinga25WMIR-10CO
2
laseratUniversityof
ScienceandTechnologyofChinainHefei(Zhengetal.,2002).Oxygen
gaswasdirectlytransferredtotheFinniganDelta+massspectro-
metertomeasure
18
O/
16
Oand
17
O/
16
isotopedataare
reportedaspartsperthousanddifferences(‰)fromthereference
standardVSMOWintheδ
18
erencemineralswere
used:δ
18
O=5.8‰forgarnetUWG-2(Valleyetal.,1995)and
δ
18
O=5.2‰forSCO-1olivine(Eileretal.,1995).Reproducibilities
forrepeatmeasurementsofeachstandardandoursamplesonagiven
daywerebetterthan0.1‰(1σ)forδ
18
O.
–Arisotopeanalysis
40
Ar/
39
AragesweremeasuredusingaGVInstruments®5400mass
spectrometeratGuangzhouInstituteofGeochemistry,ChineseAcademy
sandmonitorstandardDRA1sanidine(Wijbrans
etal.,1995)withanassumedageof25.26±0.07Mawereirradiatedat
the49–tionfactorsforinterfering
argonisotopesderivedfromCaandKare:(
39
Ar/
37
Ar)
Ca
=8.984×10
−4
,
(
36
Ar/
37
Ar)
Ca
=2.673×10
−3
and(
40
Ar/
39
Ar)
K
=5.97×10
−3
.The
crusherconsistsofa210mmlong,28mmborediameterhigh-
temperatureresistantstainlesssteeltube(T
max
∼1200°C).The
extractionandpurificationlineswerebakedoutforabout10hat
150°Cwithheatingtapeandthecrusherat250°Cwithanexternaltube
mentaldetailscanbefoundinQiuandWijbrans(2006).
Theblanksare:
36
Ar(0.005–0.008)mV,
37
Ar(0.0001–0.0004)mV,
38
Ar
(0.0001–0.0029)mV,
39
Ar(0.0005–0.0090)mVand
40
Ar(0.34–1.9)mV.
Thesample/blankratiosof
39
Arrangefrom703to22008forphengite
awereprocessedusingtheEXCEL™
programofKoppers(2002).
mentarydata
Supplementarydataassociatedwiththisarticlecanbefound,in
theonlineversion,atdoi:10.1016/.2009.01.013.
References
Ames,L.,Zhou,G.-Z.,Xiong,B.-C.,onologyandisotopiccharacterof
ultrahigh-pressuremetamorphismwithimplicationsforthecollisionoftheSino-
KoreanandYangtzecratons,ics15,472–489.
Anczkiewicz,R.,Thirlwall,M.F.,ingprecisionofSm–Ndgarnetdatingby
H
2
SO
4
leaching:ical
Society,London,SpecialPublications220,83–91.
Anczkiewicz,R.,Platt,J.P.,Thirlwall,M.F.,Wakabayashi,J.,scansubduction
offtoaslowstart:evidencefromhighprecisionLu–Hfgarnetagesonhigh-grade
ndPlanetaryScienceLetters225,147–161.
Anczkiewicz,R.,Szczepański,J.,Mazur,S.,Storey,C.,Crowley,Q.,Villa,I.M.,Thirlwall,M.F.,
Jeffries,T.E.,–Hfgeochronologyandtraceelementdistributioningarnet:
implicationsforupliftandexhumationofultra-highpressuregranulitesintheSudetes,
95,363–380.
Andersen,T.,tionofcommonleadinU–Pbanalysesthatdonotreport
204
Pb.
ChemicalGeology192,59–79.
Arnaud,N.O.,Kelley,S.P.,ceforexcessargonduringhigh-pressure
metamorphismintheDora–MairaMassif(WesternAlps,Italy),usinganultra-
violetlaserablationmicroprobe
40
Ar–
39
butionstoMineralogy
andPetrology121,1–11.
Bingen,B.,Austrheim,H.,Whitehouse,M.J.,Davis,W.J.,lementsignature
andU–Pbgeochronologyofeclogite–facieszircon,BergenArcs,CaledonidesofW
butionstoMineralogyandPetrology147,671–683.
Blichert-Toft,J.,Frei,R.,xSm–NdandLu–Hfisotopesystematicsin
metamorphicgarnetsfromtheIsuasupracrustalbelt,mica
etCosmochimicaActa65,3177–3187.
Boven,A.,Pasteels,P.,Kelley,S.P.,Punzalan,L.,Bingen,B.,Demaiffe,D.,2001.
40
Ar/
39
Arstudy
ofplagioclasesfromtheRogolandanorthositecomplex(SWNorway);anattemptto
alGeology176,105–135.
Carlson,W.D.,an
Mineralogist37,403–413.
Chen,J.F.,Zheng,Y.-F.,Zhao,Z.-F.,Li,B.,Xie,Z.,Gong,B.,Qian,H.,onships
betweenOisotopeequilibrium,mineralalterationandRb–Srchronometricvalidity
ingranitoids:butionsto
MineralogyandPetrology153,251–271.
Cheng,H.,Nakamura,E.,Kobayashi,K.,Zhou,Z.,ofatollgarnetsineclogites
andimplicationsfortheredistributionoftraceelementsduringslabexhumationin
anMineralogist92,1119–1129.
Cheng,H.,King,R.L.,Nakamura,E.,Vervoort,J.D.,Zhou,Z.,dLu–Hfand
Sm–Ndgeochronologyconstrainsgarnetgrowthinultra-high-pressureeclogites
lofMetamorphicGeology26,741–758.
tal./Lithos110(2009)327–342341
Cheng,H.,Zhou,Z.,Nakamura,E.,l-sizedistributionandcompositionof
garnetsineclogitesfromtheDabieorogen,anMineralogist
93,124–133.
Cheng,H.,Nakamura,E.,Zhou,Z.,Lu–Hfdatingofretrogradefluidactivity
logyand
Petrology95,315–326.
Cheng,H.,Zhou,Z.Y.,Nakamura,E.,withinthehigh-pressurerocks
ofthewesternDabierecordedbymineralLPOs.
Cong,B.-L.,igh-pressuremetamorphicrocksintheDabieshan-SuluRegion
ePress,Beijing.224pp.
DeJong,K.,Féraud,G.,Ruffet,G.,Amouric,M.,Wijbrans,J.R.,argon
incorporationinphengiteoftheMulhacénComplex:submicroscopicillitization
andfluidingressduringlateMioceneextensionintheBeticZone,south-eastern
alGeology178,159–195.
Dodson,M.H.,etemperatureincoolinggeochronologicalandpetrological
butionstoMineralogyandPetrology40,259–264.
Duchêne,S.,Blichert-Toft,J.,Luais,B.,Télouk,P.,Lardeaux,J.M.,Albarède,F.,
Lu–HfdatingofgarnetsandtheagesoftheAlpinehigh-pressuremetamorphism.
Nature387,586–589.
Eide,L.,McWilliams,M.,Liou,J.G.,1994.
40
Ar/
39
Aragesconstrainexhumationofhigh
y22,
601–604.
Eiler,J.M.,Valley,J.W.,Baumgartner,L.P.,okatstableisotope
micaetCosmochimicaActa57,2571–2583.
Eiler,J.M.,Farley,K.A.,Valley,J.W.,Stolper,E.M.,Hauri,E.,Craig,H.,isotope
evidenceagainstbulkrecycledsedimentinthesourceofPitcairnislandlavas.
Nature377,138–141.
Ernst,W.G.,andPacificstylesofPhanerozoicmountainbuilding:
ova17,165–188.
Ferry,J.,Watson,B.,rmodynamicmodelsandrevisedcalibrationsforthe
butionstoMineralogyand
Petrology154,429–437.
Fu,B.,Zheng,Y.-F.,Touret,J.L.R.,ogical,isotopicandfluidinclusionstudies
ofeclogitesfromSujiahe,NWDabieShan(China).ChemicalGeology187,107–128.
Ganguly,J.,Cheng,W.,Tirone,M.,dynamicsofaluminosilicategarnetsolid
solution:newexperimentaldata,anoptimizedmodel,andthermometric
butionstoMineralogyandPetrology126,137–151.
Gao,S.,Qiu,Y.,Ling,W.,McNaughton,N.J.,Zhang,B.,Zhang,G.,Zhang,Z.,Zhong,Z.,Suo,
S.,singlezirconU–PbgeochronologyofeclogitesfromYingshanand
cience:JournalofChinaUniversityofGeosciences27,558–564
(inChinesewithEnglishabstract).
Gebauer,D.,–T–tPathforan(ultra?-)high-pressureultramafic/maficrock
associationanditsfelsiccountryrocksbasedonSHRIMP-datingofmagmaticand
:Basu,A.,Hart,S.(Eds.),Example:AlpeArami
(CentralSwissAlps).EarthProcesses:ReadingtheIsotopicCode,Geophysical
Monograph,vol.95,pp.307–329.
Giletti,B.J.,ioneffectsonoxygenisotopetemperaturesofslowlycooled
ndPlanetaryScienceLetters77,218–228.
Giorgis,D.,Cosca,M.A.,Li,S.,butionandsignificanceofextraneousargonin
UHPeclogite(Suluterrane,China):insightsfromin-situ
40
Ar/
39
ArUV-laser
ndPlanetaryScienceLetter181,605–615.
Green,T.H.,Blundy,J.D.,Adam,J.,Yaxley,G.M.,terminationoftrace
elementpartitioncoefficientsbetweengarnet,clinopyroxeneandhydrousbasaltic
liquidsat2–7.5GPaand1080–1200°53,165–187.
Hacker,B.R.,Ratschbacher,L.,Webb,L.,Ireland,T.,Walker,D.,Dong,S.,1998.U/Pbzircon
agesconstrainthearchitectureoftheultrahigh-pressureQinling–DabieOrogen,
ndPlanetaryScienceLetters161,215–230.
Hacker,B.R.,Wallis,S.R.,Ratschbacher,L.,Grove,M.,Gehrels,G.,-
temperaturegeochronologyconstraintsonthetectonichistoryandarchitecture
oftheultrahigh-pressureDabie–ics25,:10.1029/
2005TC001937.
Harley,S.L.,Kinny,P.D.,Snape,I.,Black,L.P.,chemistryandthedefinitionof
:Cassidy,K.F.,Dunphy,J.M.,van
Kranendonk,M.J.(Eds.),ExtendedAbstractsof4thInternationalArchaean
-GeoscienceAustraliaRecord2001/37,Canberra,pp.511–513.
Hermann,J.,Rubatto,D.,Korsakov,A.,Shatsky,V.S.,lezircongrowthduring
fastexhumationofdiamondiferous,deeplysubductedcontinentalcrust(Kokchetav
Massif,Kazakhstan).ContributionstoMineralogyandPetrology141,66–82.
Holland,T.J.B.,Powell,R.,rgedandupdatedinternallyconsistent
thermodynamicdatasetwithuncertaintiesandcorrelations:thesystemK
2
O–
Na
2
O–CaO–MgO–MnO–FeO–Fe
2
O
3
–Al
2
O
3
–TiO
2
–SiO
2
–C–H
2
–O
2
.JournalofMeta-
morphicGeology8,89–124.
Holland,T.J.B.,Powell,R.,rnallyconsistentthermodynamicdatasetfor
lofMetamorphicGeology16,309–343.
Hollister,L.S.,zoning:aninterpretationbasedontheRayleighfractionation
e154,1647–1651.
Hoskin,P.W.O.,Black,L.P.,rphiczirconformationbysolid-state
lofMetamorphicGeology18,
423–439.
Jahn,B.-M.,Liu,X.,Yui,T.-F.,Morin,N.,Coz,M.B.-L.,-pressure/ultrahigh-
pressureeclogitesfromtheHong'anBlock,mical
characterization,bu-
tionstoMineralogyandPetrology149,499–526.
Jian,P.,Yang,W.,Li,Z.,icgeochronologicalevidencefortheCaledonian
XiongdianeclogiteinthewesternDabiemountains,ologicaSinica10,
455–465.
Jian,P.,Liu,D.,Yang,W.,Williams,I.S.,raphicalstudyofzirconsand
SHRIMPdatingoftheCaledonianXiongdianeclogite,NorthwesternDabie
ologicaSinica74,259–264.
Jian,P.,Liu,D.,Yang,W.,Williams,I.S.,datingofzirconsfromthe
CaledonianXiongdianeclogite,westernDabieMountains,eScience
Bulletin46,77–79.
Kelley,S.,argoninK–ArandAr–alGeology188,
1–22.
Kohn,M.J.,micaetCosmochimica
Acta73,170–182.
Koppers,A.A.P.,LC-softwarefor
40
Ar/
39
ers
andGeosciences28,605–619.
KroghRavna,E.J.,Terry,M.P.,rmobarometryofUHPandHPeclogites
andschists—anevaluationofequilibriaamonggarnet–clinopyroxene–kyanite–
phengite-coesite/lofMetamorphicGeology22,579–592.
Kylander-Clark,A.R.C.,Hacker,B.R.,Johnson,C.M.,Beard,B.L.,Mahlen,N.J.,Lapen,T.J.,
dLu–HfandSm–Ndgeochronologyconstrainsprogradeand
exhumationhistoriesofhigh-andultrahigh-pressureeclogitesfromwestern
alGeology242,137–154.
Lagos,M.,Scherer,E.E.,Tomaschek,F.,Münker,C.,Keiter,M.,Berndt,J.,Ballhaus,C.,
ecisionLu–HfgeochronologyofEoceneeclogite–faciesrocksfrom
Syros,Cyclades,alGeology243,16–35.
Lapen,T.J.,Johnson,C.M.,Baumgartner,L.P.,Mahlen,N.J.,Beard,B.L.,Amato,J.M.,2003.
Burialratesduringprogrademetamorphismofanultra-high-pressureterrane:an
examplefromLagodiCignana,westernAlps,ndPlanetaryScience
Letters215,57–72.
Li,S.,Wang,S.,Chen,Y.,Liu,D.,Qiu,J.,Zhou,H.,Zhang,Z.,argoninphengitefrom
eclogite:evidencefromdatingofeclogitemineralsbySm–Nd,Rb–Srand
40
Ar/
39
Ar
alGeology112,343–350.
Li,S.,Jagoutz,E.,Chen,Y.,Li,Q.,–NdandRb–Srisotopicchronologyandcooling
historyofultrahighpressuremetamorphicrocksandtheircountryrocksat
ShuangheintheDabieMountains,micaetCosmochimica
Acta64,1077–1093.
Li,S.,Huang,F.,Nie,Y.,Han,W.,Long,C.,Li,H.,Zhang,S.,Zhang,Z.,mical
andGeochronologicalconstraintsonthesuturelocationbetweentheNorthand
SouthChinablocksintheDabieorogen,sandChemistryofthe
Earth(A)26,655–672.
Li,X.-P.,Zheng,Y.-F.,Wu,Y.-B.,Chen,F.K.,Gong,B.,Li,Y.-L.,-Teclogiteinthe
DabieterraneofChina:petrologicalandisotopicconstraintsonfluidactivityand
butionstoMineralogyandPetrology148,443–470.
Li,Y.-L.,Zheng,Y.-F.,Fu,B.,2005.Mössbauerspectroscopyofomphaciteandgarnetpairs
fromeclogites:anMineralogist90,
90–100.
Liu,Y.-C.,Li,S.-G.,Xu,S.-T.,Jahn,B.-M.,Zheng,Y.-F.,Zhang,Z.-Q.,Jiang,L.-L.,Chen,G.-B.,
Wu,W.-P.,–NddatingofeclogitesfromnorthDabieanditsconstraintson
thetimingofgranulite–mica30,79–87.
Liu,X.,Jahn,B.-M.,Liu,D.,Dong,S.,Li,S.,U–Pbzircondatingofa
metagabbroandeclogitesfromwesternDabieshan(Hong'anBlock),China,andits
ophysics394,171–192.
Liu,X.,Wei,C.,Li,S.,Dong,S.,Liu,J.,baricstructureofatraverseacross
westernDabieshan:implicationsforcollisiontectonicsbetweentheSino-Korean
lofMetamorphicGeology22,361–379.
Liu,F.L.,Gerdes,A.,Liou,J.G.,Xue,H.,Liang,F.,U–Pbzircondatingfrom
Sulu–Dabiedolomiticmarble,easternChina:constraintsonprograde,ultrahigh-
lofMetamorphicGeology24,
569–589.
Liu,J.B.,Ye,K.,Sun,M.,tionP–TpathofUHPeclogitesintheHong'an
area,westernDabieMountains,89,154–173.
Ludwig,K.R.,'smanualforIsoplot3.00:ageochronologicaltoolkitfor
eyGeochronologyCenterSpecialPublication,No.4.70pp.
Makishima,A.,Nakamura,E.,ssionofmatrixeffectsinICP-MSbyhigh
poweroperationofICP:applicationtoprecisedeterminationofRb,Sr,Y,Cs,Ba,REE,
Pb,ThandUatng/ndardNewsletter
21,307–319.
Makishima,A.,Nakamura,E.,Nakano,T.,inationofzirconium,niobium,
hafniumandtantalumatng/glevelsingeologicalmaterialsbydirectnebulisation
ndardNewsletter23,7–20.
Matthews,A.,l
ofMetamorphicGeology12,211–219.
O'Brien,P.J.,tionfollowedbycollision:AlpineandHimalayanexamples.
PhysicsoftheEarthandPlanetaryInteriors127,277–291.
Otamendi,J.E.,Rosa,J.D.,Douce,A.E.P.,Castro,A.,ghfractionationofheavy
y30,159–162.
Passchier,C.W.,Trouw,R.A.J.,erVerlag.325pp.
Pearce,N.J.G.,Perkins,W.T.,Westgate,J.A.,Gordon,M.P.,Jackson,S.E.,Neal,C.R.,
Chenery,S.P.,lationofnewandpublishedmajorandtraceelement
ndard
Newsletter21,115–144.
Pidgeon,R.T.,tallisationofoscillatoryzonedzircon:somegeochronologicaland
butionstoMineralogyandPetrology110,463
–472.
Powell,R.,Holland,T.,Worley,B.,atingphasediagramsinvolvingsolid
solutionsvianon-linearequations,lof
MetamorphicGeology16,577–588.
Qiu,H.N.,Wijbrans,J.R.,oicagesandexcess
40
Aringarnetsfromthe
BixilingeclogiteinDabieshan,China:newinsightsfrom
40
Ar/
39
Ardatingby
micaetCosmochimicaActa70,2354–2370.
tal./Lithos110(2009)327–342
Ratschbacher,L.,Franz,L.,Enkelmann,E.,Jonckheere,R.,Pörschke,A.,Hacker,B.R.,
Dong,S.,Zhang,Y.,o-Korean-Yangtzesuture,theHuwandetachment,
andthePaleozoic–Tertiaryexhumationof(ultra)high-pressurerocksalongthe
Tongbai–Xinxian–lPaper403:Ultrahigh-pressuremeta-
morphism:Deepcontinentalsubduction,vol.403,pp.45–75.
Reddy,S.M.,Kelley,S.P.,Wheeler,J.,1996.A
40
Ar/
39
Arlaserprobestudyofmicasfrom
theSesiaZone,ItalianAlps:implicationsformetamorphicanddeformation
lofMetamorphicGeology14,493–508.
Rowley,D.B.,Xue,F.,Tucker,R.D.,Peng,Z.X.,Baker,J.,Davis,A.,ultrahigh
pressuremetamorphismandprotolithorthogneissesfromtheeasternDabieShan:
U/ndPlanetaryScienceLetters155,191–203.
Rubatto,D.,traceelementgeochemistry:partitioningwithgarnetandthe
linkbetweenU–alGeology184,123–138.
Rubatto,D.,Hermann,J.,mentalzircon/meltandzircon/garnettrace
elementpartitioningandimplicationsforthegeochronologyofcrustalrocks.
ChemicalGeology241,38–61.
Scaillet,S.,
40
Artransportscaleandmechanisminhighpressurephengites:a
casestudyfromaneclogitizedmetabasiteoftheDora–Mairanappe,westernAlps.
GeochimicaetCosmochimicaActa60,1075–1090.
Scherer,E.E.,Cameron,K.L.,Blichert-Toft,J.,–Hfgarnetgeochronology:closure
temperaturerelativetotheSm–Ndsystemandtheeffectsoftracemineralinclusions.
GeochimicaetCosmochimicaActa64,3413–3432.
Scherer,E.,Münker,C.,Mezger,K.,ationofthelutetium–hafniumclock.
Science293,683–687.
Skora,S.,Baumgartner,L.P.,Mahlen,N.J.,Johnson,C.M.,Pilet,S.,Hellebrand,E.,2006.
Diffusion-limitedREEuptakebyeclogitegarnetsanditsconsequencesforLu–Hfand
Sm–butionstoMineralogyandPetrology152,703–720.
Söderlund,U.,Patchett,P.J.,Vervoort,J.D.,Isachsen,C.E.,
176
Ludecayconstant
determinedbyLu–HfandU–PbisotopesystematicsofPrecambrianmaficintrusions.
EarthandPlanetaryScienceLetters219,311–324.
Sun,S.S.,McDonough,W.F.,alandIsotopicSystematicsofoceanicbasalts:
:Saunders,A.D.,Norry,M.J.
(Eds.),icalSocietyLondonSpecialPublica-
tions,vol.42,pp.313–345.
Sun,W.,Williams,I.S.,Li,S.,iferousandTriassiceclogitesinthewestern
DabieMountains,east-centralChina:evidenceforprotractedconvergenceofthe
lofMetamorphicGeology20,873–886.
Tomkins,H.S.,Powell,R.,Ellis,D.J.,ssuredependenceofthezirconium-in-
lofMetamorphicGeology25,703–713.
Valley,J.W.,Kitchen,N.,Kohn,M.J.,Niendorf,C.R.,Spicuzza,M.J.,-2,agarnet
standardforoxygenisotoperatio:strategiesforhighprecisionandaccuracywith
micaetCosmochimicaActa59,5223–5231.
Watson,E.B.,Wark,D.A.,Thomas,J.B.,llizationthermometersforzircon
butionstoMineralogyandPetrology151,413–433.
Webb,L.,Hacker,B.,Ratschbacher,L.,McWilliams,M.,Dong,S.,chrono-
logicconstraintsondeformationandcoolinghistoryofhighandultrahigh-pressure
rocksinQinling–Dabieorogen,ics18,621–638.
Whitehouse,M.J.,Platt,J.P.,highgrademetamorphism—constraintsfrom
butionstoMineralogyandPetrology
145,61–74.
Wijbrans,J.R.,Pringle,M.S.,Koppers,A.A.P.,Scheveers,R.,eochronologyof
dingsoftheRoyal
NetherlandsAcademyofArtsandSciences98,185–218.
Wu,Y.-B.,Zheng,Y.-F.,Zhao,Z.-F.,Gong,B.,Liu,X.M.,Wu,F.-Y.,2006.U–Pb,HfandO
isotopeevidencefortwoepisodesoffluid-assistedzircongrowthinmarble-hosted
micaetCosmochimicaActa70,3743–3761.
Wu,Y.-B.,Gao,S.,Zhang,H.-F.,Yang,S.-H.,Jiao,W.-F.,Liu,Y.-S.,Yuan,H.-L.,of
UHPmetamorphismintheHong'anarea,westernDabieMountains,China:evidence
fromzirconU–Pbage,butionsto
MineralogyandPetrology155,123–133.
Xie,Z.,Zheng,Y.-F.,Jahn,B.-M.,Ballevre,M.,Chen,J.-F.,Gautier,P.,Gao,T.-S.,Gong,B.,
Zhou,J.-B.,–NdandRb–Srdatingforpyroxene–garnetitefromNorth
Dabieineast-centralChina:problemofisotopedisequilibriumduetoretrograde
alGeology206,137–158.
Xu,B.,Grove,M.,Wang,C.,Zhang,L.,Liu,S.,2000.
40
Ar/
39
Arthermochronologyfromthe
northwesternDabieShan:constraintsontheevolutionofQinling–Dabieorogenic
belt,ophysics322,279–301.
Ye,B.D.,Jiang,P.,Xu,J.,Cui,F.,Li,Z.,Zhang,Z.,iaheterranecollagebeltand
itsconstitutionandevolutionalongthenorthernhillsideoftheTongbai–Dabie
fChinaUniversityofGeoscience,Wuhan,pp.66–67(in
ChinesewithEnglishabstract).
Yuan,H.-L.,Gao,S.,Liu,X.-M.,Li,H.-M.,Guenther,D.,Wu,F.-Y.,teU–Pband
traceelementdeterminationsofzirconbylaserablation-inductivelycoupled
ndardsandGeoanalyticalResearch28,353–370.
Zheng,Y.-F.,ationofoxygenisotopefractionationinanhydroussilicate
micaetCosmochimicaActa57,1079–1091.
Zheng,Y.-F.,Fu,B.,tionofoxygendiffusivityfromanionporosityinminerals.
GeochemicalJournal32,71–89.
Zheng,Y.-F.,Wang,Z.R.,Li,S.G.,Zhao,Z.F.,isotopeequilibriumbetween
eclogitemineralsanditsconstraintsonmineralSm–mica
etCosmochimicaActa66,625–634.
Zheng,Y.-F.,Fu,B.,Gong,B.,Li,L.,isotopegeochemistryofultrahigh
pressuremetamorphicrocksfromtheDabie–SuluorogeninChina:implicationsfor
geodynamicsandflcienceReview62,105–161.
Zheng,Y.-F.,Wu,Y.-B.,Chen,F.-K.,Gong,B.,Li,L.,Zhao,Z.-F.,U–Pband
oxygenisotopeevidenceforalarge-scale
18
Odepletioneventinigneousrocks
micaetCosmochimicaActa68,4145–4165.
Zheng,Y.-F.,Zhou,J.-B.,Wu,Y.-B.,Xie,Z.,-grademetamorphicrocksinthe
Dabie–Suluorogenicbelt:apassive-marginaccretionarywedgedeformedduring
ationalGeologyReview47,851–871.
Zheng,Y.-F.,Gao,T.-S.,Wu,Y.-B.,Gong,B.,Liu,X.M.,flowduringexhumation
ofdeeplysubductedcontinentalcrust:zirconU–PbageandO-isotopestudiesofa
lofMetamorphicGeology25,
267–283.
Zheng,Y.-F.,Wu,R.-X.,Wu,Y.-B.,Zhang,S.-B.,Yuan,H.L.,Wu,F.-Y.,ltingof
juvenilearc-derivedcrust:geochemicalevidencefromNeoproterozoicvolcanicand
graniticrocksintheJiangnanOrogen,brianResearch163,
351–383.
Zhou,G.,Liu,Y.J.,Eide,E.A.,Liou,J.G.,Ernst,W.G.,essurelowtemperature
metamorphisminnorthernHubeiProvince,lofMetamorphic
Geology11,561–574.
版权声明:本文标题:Cheng Hao,2009,Lithos 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://roclinux.cn/p/1735343667a1650938.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论