admin 管理员组

文章数量: 1087135


2024年3月21日发(作者:list的读音)

微积分公式

D

x

sin x=cos x

cos x = -sin x

tan x = sec

2

x

cot x = -csc

2

x

sec x = sec x tan x

csc x = -csc x cot x

1

x

D

x

sin

-1

()=

22

a

ax

x

cos

-1

()=

a

xa

tan

-1

()=

2

aax

2

x

cot

-1

()=

a

 sin x dx = -cos x + C

 cos x dx = sin x + C

 tan x dx = ln |sec x | + C

 cot x dx = ln |sin x | + C

 sec x dx = ln |sec x + tan x | + C

 csc x dx = ln |csc x – cot x | + C

 sin

-1

x dx = x sin

-1

x+

1x

2

+C

 cos

-1

x dx = x cos

-1

x-

1x

2

+C

 tan

-1

x dx = x tan

-1

x-½ln (1+x

2

)+C

 cot

-1

x dx = x cot

-1

x+½ln (1+x

2

)+C

 sec

-1

x dx = x sec

-1

x- ln |x+

x

2

1

|+C

sin

-1

(-x) = -sin

-1

x

cos

-1

(-x) =  - cos

-1

x

tan

-1

(-x) = -tan

-1

x

cot

-1

(-x) =  - cot

-1

x

sec

-1

(-x) =  - sec

-1

x

csc

-1

(-x) = - csc

-1

x

x

sinh

-1

()= ln (x+

a

2

x

2

) x

R

a

x

cosh

-1

()=ln (x+

x

2

a

2

) x≧1

a

x1ax

tanh

-1

()=ln () |x| <1

a2aax

1xa

-1

x

coth ()=ln () |x| >1

2

-1-1

a2axa

 csc x dx = x csc x+ ln |x+

x1

|+C

x1

1x

2

sech()=ln(+)0≦x≦1

2

ax

x

-1

x

a

sec

-1

()=

a

xx

2

a

2

csc

-1

(x/a)=

D

x

sinh x = cosh x

cosh x = sinh x

 sinh x dx = cosh x + C

 cosh x dx = sinh x + C

x1

1x

2

csch ()=ln(+) |x| >0

2

ax

x

duv = udv + vdu

-1

tanh x = sech

2

x

 tanh x dx = ln | cosh x |+ C

coth x = -csch

2

x

 coth x dx = ln | sinh x | + C

sech x = -sech x tanh x

 sech x dx = -2tan

-1

(e

-x

) + C

csch x = -csch x coth x

1e

x

 csch x dx = 2 ln || + C

2x

1e

1

x

D

x

sinh

-1

()=

 sinh

-1

x dx = x sinh

-1

x-

1x

2

+ C

22

a

ax

x

cosh

-1

()=

a

-1

 duv = uv =  udv +  vdu

→ udv = uv -  vdu

cos

2

θ-sin

2

θ=cos2θ

cos

2

θ+ sin

2

θ=1

cosh

2

θ-sinh

2

θ=1

cosh

2

θ+sinh

2

θ=cosh2θ

sin 3θ=3sinθ-4sin

3

θ

cos3θ=4cos

3

θ-3cosθ

→sin

3

θ= ¼ (3sinθ-sin3θ)

→cos

3

θ=¼(3cosθ+cos3θ)

1

xa

22

 cosh

-1

x dx = x cosh

-1

x-

x

2

1

+ C

 tanh

-1

x dx = x tanh

-1

x+ ½ ln | 1-x

2

|+ C

xa

tanh()=

2

aax

2

-1

e

jx

e

jx

e

jx

e

jx

sin x = cos x =

2j

2

 coth

-1

x dx = x coth

-1

x- ½ ln | 1-x

2

|+ C

 sech

-1

x dx = x sech

-1

x- sin

-1

x + C

x

coth()=

a

 csch

-1

x dx = x csch

-1

x+ sinh

-1

x + C

a

x

γ

sech

-1

()=

22

a

a

xax

R b

csch

-1

(x/a)=

e

x

e

x

e

x

e

x

sinh x = cosh x =

22

bc

a

正弦定理:= ==2R

sin

sin

sin

a

xax

22

β

α

c

余弦定理: a

2

=b

2

+c

2

-2bc cosα

b

2

=a

2

+c

2

-2ac cosβ

c

2

=a

2

+b

2

-2ab cosγ

sin (α±β)=sin α cos β ± cos α sin β

cos (α±β)=cos α cos β

sin α sin β

2 sin α cos β = sin (α+β) + sin (α-β)

2 cos α sin β = sin (α+β) - sin (α-β)

2 cos α cos β = cos (α-β) + cos (α+β)

2 sin α sin β = cos (α-β) - cos (α+β)

x

2

x

3

x

n

e=1+x+++…++ …

2!

3!

n!

x

sin α + sin β = 2 sin ½(α+β) cos ½(α-β)

sin α - sin β = 2 cos ½(α+β) sin ½(α-β)

cos α + cos β = 2 cos ½(α+β) cos ½(α-β)

cos α - cos β = -2 sin ½(α+β) sin ½(α-β)

tan (α±β)=

tan

tan

cot

cot

, cot (α±β)=

tan

tan

cot

cot

1

= n

i1

n

n

(1)

n

x

2n1

x

3

x

5

x

7

sin x = x-+-+…++ …

(2n1)!

3!5!

7!

(1)

n

x

2n

x

2

x

4

x

6

cos x = 1-+-+…++ …

(2n)!

2!4!6!

(1)

n

x

n1

x

2

x

3

x

4

ln (1+x) = x-+-+…++ …

(n1)!

2

3

4

(1)

n

x

2n1

x

3

x

5

x

7

tan x = x-+-+…++ …

(2n1)

35

7

-1

r

i

= ½n (n+1)

i1

n

i

2

=

i1

n

1

n (n+1)(2n+1)

6

i

i1

3

= [½n (n+1)]

2

x-1-t2x-1

t

tt

e dt = 2



e

dt =

00



2

Γ(x) =

0

1

(ln)

x-1

dt

t

1

r(r1)

2

r(r1)(r2)

3

m-1n-1

(1+x)=1+rx+x+x+… -1

β(m, n) =

x

(1-x) dx=2

2

sin

2m-1

x cos

2n-1

x dx

0

0

2!

3!

=

希腊字母

大写

Α

Β

Γ

Δ

Ε

Ζ

Η

Θ

小写

α

β

γ

δ

ε

ζ

η

θ

读音

alpha

beta

gamma

delta

epsilon

zeta

eta

theta

大写

Ι

Κ

Λ

Μ

Ν

Ξ

Ο

Π

小写

ι

κ

λ

μ

ν

ξ

ο

π

读音

iota

kappa

lambda

mu

nu

xi

omicron

pi

大写

Ρ

Σ

Τ

Υ

Φ

Χ

Ψ

Ω

0

x

m1

dx

mn

(1x)

小写

ρ

σ, ς

τ

υ

φ

χ

ψ

ω

读音

rho

sigma

tau

upsilon

phi

khi

psi

omega

倒数关系: sinθcscθ=1; tanθcotθ=1; cosθsecθ=1

商数关系: tanθ=

sin

cos

; cotθ=

cos

sin

平方关系: cos

2

θ+ sin

2

θ=1; tan

2

θ+ 1= sec

2

θ; 1+ cot

2

θ= csc

2

θ

順位高

;  顺位高d 顺位低 ;

順位低

0* =

110

* = = 0* =

00



0

0

=

e

0()

;

0

=

e

0

;

1

=

e

0

顺位一:对数; 反三角(反双曲)

顺位二: 多项函数; 幂函数

顺位三: 指数; 三角(双曲)


本文标签: 顺位 关系 读音 微积分 正弦