admin 管理员组

文章数量: 1087135


2023年12月17日发(作者:osi七层模型上三层)

常用数学符号及其意义

1 几何符号

⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △

2 代数符号

∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶

3运算符号

× ÷ √ ±

4集合符号

∪ ∩ ∈

5特殊符号

∑ π(圆周率)

6推理符号

|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡

≥ ≤ ∈ ←

↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧

&; §

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

Γ Δ Θ Λ Ξ Ο Π Σ Φ

Ψ Ω

α β γ δ ε ζ η θ ι κ λ

ν

±

Χ

μ

ξ ο π ρ σ τ υ φ χ ψ ω

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ

ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ

∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧

∨ ∩ ∪ ∫ ∮

∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒

≦ ≧ ≮ ≯ ⊕ ⊙ ⊥

⊿ ⌒ ℃

指数0123:o123

上述符号所表示的意义和读法(中英文参照)

+ plus 加号;正号

- minus 减号;负号

± plus or minus 正负号

× is multiplied by 乘号

÷ is divided by 除号

= is equal to 等于号

≠ is not equal to 不等于号

≡ is equivalent to 全等于号

≌ is approximately equal to 约等于

≈ is approximately equal to 约等于号

< is less than 小于号

> is more than 大于号

≠ ≡ ≤ ≥

≤ is less than or equal to 小于或等于

≥ is more than or equal to 大于或等于

% per cent 百分之…

∞ infinity 无限大号

√ (square) root 平方根

X squared X的平方

X cubed X的立方

∵ since; because 因为

∴ hence 所以

∠ angle 角

⌒ semicircle 半圆

⊙ circle 圆

○ circumference 圆周

△ triangle 三角形

⊥ perpendicular to 垂直于

∪ intersection of 并,合集

∩ union of 交,通集

∫ the integral of …的积分

∑ (sigma) summation of 总和

° degree 度

′ minute 分

〃 second 秒

# number …号

@ at 单价

=======================================

数学符号:(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率π。

(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫)等。

(3)关系符号:如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是反比例符号,“∈”是属于符号,“C”或“C下面加一横”是“包含”符号等。

(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”

(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”

(6)省略符号:如三角形(△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n),阶乘(!)等。

数学符号的意义

符号 意义

∞ 无穷大

π 圆周率

|x| 绝对值

∪ 并集

∩ 交集

≥ 大于等于

≤ 小于等于

≡ 恒等于或同余

ln(x) 以e为底的对数

lg(x) 以10为底的对数

floor(x) 上取整函数

ceil(x) 下取整函数

x mod y 求余数

x - floor(x) 小数部分

∫f(x)dx 不定积分

∫[a:b]f(x)dx a到b的定积分

数学符号的应用

P为真等于1否则等于0

∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况

如:∑[n is prime][n < 10]f(n)

∑∑[1≤i≤j≤n]n^2

lim f(x) (x->?) 求极限

f(z) f关于z的m阶导函数

C(n:m) 组合数,n中取m

P(n:m) 排列数

m|n m整除n

m⊥n m与n互质

a ∈ A a属于集合A

#A 集合A中的元素个数

==========================

数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。

例如加号曾经有好几种,现在通用"+"号。

"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。

"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。

到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。

乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。

到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。

"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。

十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。

1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。

大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。


本文标签: 符号 数学家 表示