admin 管理员组

文章数量: 1087840


2024年12月29日发(作者:使用ajax技术能带来什么优势)

/NanoLett

GrapheneSurface-EnabledLithiumIon-ExchangingCells:

Next-GenerationHigh-PowerEnergyStorageDevices

,*

,†

ChenguangLiu,

DavidNeff,

ZhenningYu,

,

WeiXiong,

and

ArunaZhamu*

,†,‡

NanotekInstruments,

AngstronMaterials,Inc.,1242McCookAvenue,Dayton,Ohio45404,UnitedStates

SupportingInformation

b

ABSTRACT:Hereinreportedisafundamentallynewstrategyforthedesignof

proachisbasedonthe

exchangeoflithiumionsbetweenthesurfaces(notthebulk)oftwonanos-

tructuredelectrodes,completelyobviatingtheneedforlithiumintercalationor

electrodes,massivegraphenesurfacesindirectcontact

withliquidelectrolytearecapableofrapidlyandreversiblycapturinglithiumions

throughsurfaceadsorptionand/evices,based

onunoptimizedmaterialsandconfiguration,arealreadycapableofstoringan

energydensityof160Wh/kg

cell

,whichis30timeshigherthanthat(5Wh/kg

cell

)

ofconventionalsymmetricsupercapacitorsandcomparabletothatofLi-ion

ealsocapableofdeliveringapowerdensityof100kW/kg

cell

,

whichis10timeshigherthanthat(10kW/kg

cell

)ofsupercapacitorsand100timeshigherthanthat(1kW/kg

cell

)ofLi-ionbatteries.

KEYWORDS:Supercapacitor,battery,graphene,energydensity,functionalgroup

ithiumionbatteriesandelectrochemicalcapacitors(super-

capacitors),separatelyorincombination,arebeingconsid-

eredforelectricvehicle(EV),renewableenergystorage,and

smartgridapplications.

1À5

Amajorscientificchallengeisto

eithersignificantlyincreasetheenergydensityofconventional

supercapacitorsordramaticallyimprovethepowerdensityof

lithiumionbatteries.

2,3

Supercapacitorsworkontwomainchargestoragemechan-

isms:surfaceionadsorption(electricdoublelayercapacitance,

EDL)andredoxreactions(pseudocapacitance).

1,2

Compared

withbatteries,supercapacitorsdeliverahigherpowerdensity,

offeramuchhighercycle-life,needaverysimplechargingcircuit,

r,supercapacitorsexhibit

,5Wh/kg

cell

forcommercial

activatedcarbon-basedsupercapacitorsversus100À150Wh/

kg

cell

forthecommercialLi-ionbattery,allbasedonthetotalcell

weight).

2

Previousattemptstoincreasethegravimetricenergyof

supercapacitorshaveincludedtheuseofelectrodematerialswith

enhancedgravimetriccapacitances

6

orthepseudocapacitance

providedbynanostructuredtransitionmetaloxides.

7À9

How-

ever,theprohibitivelyhighcostofruthenium-basedoxidesand

thecyclinginstabilityofmanganese-basedoxides

9À11

have

impededthecommercialapplicationofthesesupercapacitors.

In2006,ourresearchgroupreportedgraphene-basedelectrodes

forbothEDLandredoxsupercapacitors,

12

whichhassincebecome

atopicofintensiveresearch.

13À19

Significantprogresshasbeen

,redoxpairsbetweengraphene

oxideÀMnO

2

16

orgrapheneÀpolyaniline

17,18

)andionicliquid

electrolytewithahighoperatingvoltage

13,19

forimprovedenergy

r,thesesupercapacitorshaveyettoexhibita

r

2011AmericanChemicalSociety

L

sufficientlyhighenergydensityorpowerdensityforEVand

renewableenergyapplications.

Lithium-ionbatteriesoperateonFaradaicreactionsinthebulk

lkstoragemechanismprovidesa

muchhigherenergydensity(120À150Wh/kg

cell

)ascompared

r,storinglithiuminthebulkofa

materialimpliesthatlithiummustleavetheinteriorofacathode

activeparticleandeventuallyenterthebulkofananodeactive

particleduringrecharge,e

oftheextremelylowsolid-statediffusionrates,theseprocesses

ult,lithiumionbatteriesdeliveravery

lowpowerdensity(100À1000W/kg

cell

),requiringtypically

hoursforrecharge.

Severaleffortshavebeenmadetoincreasethepowerchar-

acteristicsoflithium-ionbatteriesbyreducingthedimensionsof

lithiumstoragematerialsdowntothenanometerscale,which

wouldreducethelithiumdiffusiontime.

20À23

However,nanos-

,nanoparticlesof

lithiumtitanateanodeorlithiumironphosphatecathode)are

stillnotcapableofdeliveringapowerdensitycomparabletothat

ofsupercapacitorelectrodes.

Recently,Leeetal.

24

usedchemicallyfunctionalizedmulti-

walledcarbonnanotubes(MW-CNTs)toreplaceactivated

carbon(AC)asacathodeactivematerialandLi

4

Ti

5

O

12

asan

anodeactivematerialinalithium-ioncapacitor(LIC)

LICcell,theLi

4

Ti

5

O

12

anodestillrequireslithiumintercalation

Received:May31,2011

Revised:August1,2011

Published:August08,2011

3785

/10.1021/nl2018492

|

NanoLett.2011,11,3785–3791

NanoLetters

Figure

enabled,

1.(a)Upperportionshowsthestructureofafully

current

Liion-exchangingcellwhenitismade,containingan

surface-

anode

source

separator,

(e.g.,

collectorandananostructuredmaterialattheanode,aLiion

cathode.

liquid

pieces

electrolyte,

ofLifoilorsurface-stabilizedLipowder),aporous

electrolyte

rstdischarge

Thelower

(Liis

left

ionized

portion

ananostructured

with

showsthestructure

functional

ofthis

material

cellafter

atthe

its

tured

portion

cathode

toreach

and

surface-borne

the

rapidlyreacting

functional

Liionsdiffusingthroughliquid

withthese

groups

groups).

inthe

Lower

nanostruc-

rapidly

showsthestructureofthiscellafterbeingrecharged(Liions

right

liquid

releasedfromthemassivecathodesurface,diffusingthrough

are

can

ions

serve

electrolytetoreachtheanodeside,wherethehugesurfaceareas

structure

canelectrodeposit

asasupportingsubstrateontowhichmassiveamountsofLi

provide

functional

accessibility

ofatreatedcarbon

concurrently,

byliquid

black

and(b)schematicoftheinternal

electrolyte

particlewith

in

poresorgatesopenedto

smallgraphene

groups

sheet

attached

canreadily

toanedge

react

or

with

surface

suchamannerthatthe

Liions.

ofanaromaticringor

intoandoutofthebulkofasolidparticle,whichremainsslow

andprovidesrelativelylowenergydensityandpowerdensity.

Leeetal.

24

alsoinvestigatedahalf-cellconfiguration,wherein

impressivepowerdensities,evenhigherthanthoseofsuper-

capacitors,r,theseexceptionalpower

densitiescouldonlybeachievedwithanelectrodethicknessof

0.3À3μmobtainedbythelayer-by-layer(LBL)approach.

Further,sincethespecificsurfaceareaofacurrentcollector

(typically,1m

2

/g)istoolowtoaccommodatemassive

amountsofreturninglithiumions,theoveralllithiumredeposi-

nfigurationis

alsoconducivetotheformationofdendritesuponrepeated

chargesanddischarges.

Anewparadigmishereinpresentedforconstructinghigh-

powerlithiumcells,whicharetotallygraphenesurface-mediated

orsurface-enabled,involvingexchangeofmassivelithiumions

betweentwonanostructuredgrapheneelectrodes.

AsillustratedinFigure1,boththecathodeandtheanodeare

porous,havinglargeamountsofgraphenesurfacesindirect

contactwithliquidelectrolyte,therebyenablingfastanddirect

surfaceadsorptionoflithiumionsand/orsurfacefunctional

group-lithiuminteraction,andobviatingtheneedforintercala-

ecellismade,particlesorfoiloflithiummetalare

implementedattheanode(upperportionofFigure1a),which

areionizedduringthefirstdischargecycle,supplyingalarge

onsmigratetothenanostruc-

turedcathodethroughliquidelectrolyte,enteringtheporesand

reachingthesurfacesintheinteriorofthecathodewithout

havingtoundergosolid-stateintercalation(lowerleftdiagramin

Figure1a).Whenthecellisrecharged,amassivefluxoflithium

ionsarequicklyreleasedfromthelargeamountofcathode

surface,gesurfaceareaof

thenanostructuredanodeenableconcurrentandhigh-rate

depositionoflithiumions(lowerrightportionofFigure1a),

re-establishinganelectrochemicalpotentialdifferencebetween

thelithium-decoratedanodeandthecathode.

Aparticularlyusefulnanostructuredelectrodematerialisthe

nanographeneplatelet(NGP),whichreferstoeitherasingle-

e-

layergraphenesheetisa2Dhexagonlatticeofcarbonatoms

covalentlybondedalongtwoplanedirections.

25À28

Inthisstudy,bothoxidizedandreducedsingle-layerand

multilayergraphenewerepreparedfromnaturalgraphite(N),

petroleumpitch-derivedartificialgraphite(M),micrometer-

scaledgraphitefibers(C),exfoliatedgraphite(GorEG),AC,

carbonblack(CB),andchemicallytreatedcarbonblack(t-CB).

ACandCBcontainnarrowergraphenesheetsoraromaticrings

asabuildingblock,whilegraphiteandgraphitefiberscontain

icrostructuresallmustbeex-

foliated(toincreaseintergraphenespacingingraphite)or

activated(toopenupnanogatesorpores,Figure1b)toallow

liquidelectrolytetoaccessmoregrapheneedgesandsurfaces

(experimentaldetailsprovidedinSupportingInformation).

Coin-sizecellswereconstructedtotestthesenanostructured

odeswerepreparedwith85%active

material,5%conductiveadditive,and10%swere

calculatedpertotalcathodematerialandpertotalcellweight

(approximatedascathodeweightÂ5).Thesampleswere

thermallyexfoliatedgraphite(CellG),graphenefromchemically

reducedgrapheneoxide(CellN),graphenefromoxidized

artificialmesophasegraphite(CellM),graphenefromoxidized

3786

/10.1021/nl2018492|NanoLett.2011,11,3785–3791

NanoLetters

Figure2.(a)AFMimageofsingle-layergrapheneoxidesheetsfromnaturalgraphite,(b)single-layergraphenesheetsstackedoverthesample-

supportingTEMmicrogrids,and(c)scanningelectronmicroscopyimageofexfoliatedgraphite.

carbonfiber(CellC),carbonblack(CellCB),oxidizedcarbon

black(t-CB),andactivatedcarbon(CellAC).Thesematerials

,>CdOandÀCOOH)that

-

phenoxidesheetsaremostlysingle-layered,basedontheresults

ofcombinedBrunauerÀEmmettÀTeller(BET)surfaceanalysis,

atomicforcemicroscopy(AFM)(Figure2a),andtransmission

electronmicroscopy(TEM)(Figure2b).Theconstituent

graphiteflakesinagraphitewormorexfoliatedgraphite

(Figure2c)remaininterconnectedasanetworkof3Delec-

tron-conductingpaths,andthemeso-andmacroscaledpores

betweenflakewallsareeasilyaccessibletoliquidelectrolyte.

TheGalvanostaticcharge/dischargecurvesandcyclicvoltam-

metry(CV)diagramsofCellsM,C,G,andNareshownin

Figure3a,b,rredoxpeakisobservedin

enotedthattheCVcurvesofboththe

conventionalpseudocapacitorsandlithium-ionbatteriestendto

exhibitastrongredoxpeakduetoslowerFaradaicredox

,

polyanilineinapseudocapacitor,lithiumtitanateinalithium-

ionbattery,andLi

x

C

6

O

6

inanorganicelectrodebattery

29

).The

lackofastrong,well-definedredoxreactionpeakintheCVsof

ourfullysurface-mediateddevicesandtheLBLCNTdeviceof

Lee,etal.

24

mightbeduetothefollowingreasons:(1)the

reactionbetweensurfacefunctionalgroupsandultrasmall

lithiumionsarerelativelyfastandoflowactivationbarrier

(Figure1b);

24,25,30À32

(2)fastadsorptionofLionabenzene

ringcenterofagraphenesheet;

33À35

(3)fasttrappingofLiions

ingraphenedefectsites;

36

and/or(4)electricdouble-layer

lelithium-capturingmechanismsofgraphene

surfacesarefurtherdiscussedinSupportingInformation.

,CellM)

withaspecificcapacityof127mAh/gatacurrentdensityof1A/g,

reachinganenergydensityof85Wh/kg

cell

(Figure3c)ata

currentdensityof0.1A/g,whichis17timeshigherthanthe

typically5Wh/kg

cell

ofcommercialAC-basedsymmetricsuper-

l-levelenergydensityandpowerdensitydata

presentedinFigure3c,dwereobtainedbydividingthecorre-

spondingvalues(basedonsingle-electrodeweight)inSupport-

ingInformationFigureS12andS13byafactorof5.

3787

/10.1021/nl2018492|NanoLett.2011,11,3785–3791

NanoLetters

Figure3.(a)Charge/dischargecurvesofthreesurface-enabledcells(M=NGPfrommesophasecarbon-derivedgraphite,C=NGPfromcarbonfibers,

G=fromexfoliatednaturalgraphite),andN=chargecurrentdensityis1A/g.(b)The

CVplotsofthesamecellsatthescanrate25mV/s,(c,d)RagoneplotsoftheseandCB,t-CB,andACcellswiththickcathodes.

Anothergraphenesurface-mediatedcell(CellN,Figure3d)

exhibitsanevenhigherenergydensityof160Wh/kg

cell

,

rgydensity

ofCell-Nmaintainsavalueover51.2Wh/kg

cell

evenata

currentdensityashighas10A/g,deliveringapowerdensityof

4.55kW/kg

cell

.ThepowerdensityofcommercialAC-based

symmetricsupercapacitorsistypicallyintherangeof1À

10kW/kg

cell

atanenergydensityof5Wh/kg

cell

,Thisimplies

that,comparedwithaconventionalsupercapacitoratthesame

powerdensity,thesurface-mediateddevicescandeliver>10

timestheenergydensity.

ThepowerdensityofCellNis25.6kW/kg

cell

at50A/gwith

anenergydensityof24Wh/kg

cell

.Thepowerdensityincreases

to93.7kW/kg

cell

at200A/gwithanenergydensityof12Wh/

kg

cell

(Figure3d).Thispowerdensityis1orderofmagnitude

higherthanthatofconventionalsupercapacitorsthatarenoted

fortheirhighpowerdensities,and2À3ordersofmagnitude

higherthanthat(typically0.1À1.0kW/kg

cell

)ofconventional

atahaveclearlydemonstratedthat

thesurface-enabledcellsareaclassofenergystoragecellsby

itself,distinctfrombothconventionalsupercapacitorsand

lithium-ionbatteries.

Figure3bcontainsacomparisonofCVdatashowingthatthe

carbonfiber-derivedgraphene(CellC)andmesophasecarbon-

derivedgraphene(M)havebetterperformancethanthermally

exfoliatedgraphite(G)in

linewiththeobservationthatCandMexhibitedsignificantly

higherÀCOOHandÀCdOcontents(Figure4b),whichare

capableofcapturingLiionsviaafastsurfaceredoxreaction.

Figure3dindicatesthattheenergydensityandpowerdensity

valuesofCBcanbesignificantlyincreasedbysubjectingCBtoa

treatmentthatinvolvesanexposuretoamixtureofsulfuricacid,

sodiumnitrate,

surfaceareawasfoundtoincreasefromapproximately122m

2

/g

toapproximately300m

2

/g,resultinginacapacityincreasefrom

8.47to46.63mAh/g).AlthoughAChasahighspecificsurface

area(1200m

2

/g),asignificantproportionoftheporesinACare

microscopicpores(<1nm)and,hence,arenotaccessibleto

,CellACdoesnotexhibithigher

powerandenergydensitiescomparedtoNGPcells.

ThecyclingperformanceforMcellisshowninFigure4aand

,NandAC)isinSupportingInformation

ementsweretakenonceevery100cycles

duringa0.1A/gchargeanddischarge,followingthesame

methodwithliterature

24

(forcomparisonpurpose).Allother

cycleswererunatanacceleratedrateof1A/1000cycles,

theretentionofcapacityremainsabove95%,whichillustratesthe

labilitycanbefurther

enotedthatmore

than30graphenesurface-enabledcellshavebeeninvestigatedfor

morethan2000cycles,andwehavefoundnoevidenceto

indicatetheinitiationofanydendrite-likestructure.

Thepresenceoffunctionalgroups,suchasÀCOOHand

>CdO,inchemicallypreparedgrapheneoxidehavebeenwell

documented.

37,38

Theformationofthesefunctionalgroupsisa

naturalresultoftheoxidizingreactionsofgraphitebysulfuric

,nitricacidandpotassium

permanganate).Bothunseparatedgraphitewormsandthe

separatedNGPshavesurface-oredge-bornefunctionalgroups.

Carbonylgroups(>CdO)inorganicandpolymericelectrodes

werefoundtobecapableofreadilyreactingwithlithiumionsto

formredoxpairs.

24,29

AccordingtoLeeetal.,

24

ÀCOOHgroups

onCNTsurfacesarecapableofreversiblyandrapidlyforminga

redoxpairwithalithiumionduringthechargeanddischarge

3788

/10.1021/nl2018492|NanoLett.2011,11,3785–3791

NanoLetters

Figure4.(a)ementsweretakenonceevery100cyclesduringa0.1A/gchargeand

ercycleswererunatanacceleratedrateof1A/ndofthetest,thecapacitywas95%entionmaybe

furtherimprovedwithoptimizationofthematerialpreparationprocedure.(b)FTIRspectraofthethreematerials,indicatingthatbothexfoliated

mesophasecarbon-andcarbon-fiber-basedelectrodes(MandC)exhibitmoreÀCOOHand>CdOgroupscomparedtotheexfoliatedgraphitesample

(G).(c)CyclicvoltammetryplotsofoxidizedMcellandapartiallyreducedMcell.(d)RagoneplotofoxidizedMcellandapartiallyreducedMcell,

indicatingsignificantlyreducedcapacity,energydensity,andpowerdensitywhenasignificantproportionofthefunctionalgroupswaseliminated.

(e)TheRagoneplotsofgraphenesurface-enabledLiion-exchangingcellswithdifferentelectrodethicknesses.

nceivablethatLiionsalsocanreactwith

the>CdOandÀCOOHgroupsonthegrapheneplanesor

edgesofseparatedgraphenesheets,theunseparatedgraphene

sheetsthatconstitutegraphiteworms,andthearomaticrings

(smallgraphenesheets)inACortreatedCB.

ThetypicalgravimetriccapacitanceofNGPelectrodesinthe

voltagerange3À4.2VversusLi(withacomparablevoltagescale

of0to∼1.2Vversusstandardhydrogenelectrode(SHE))is

150À350F/arbonyl(>CdO)groups,forinstance,can

bereducedbyLi

+

andreversiblyoxidized,capacitanceobtained

canbeattributedtotheFaradaicreactionsofoxygenonthe

grapheneedgeorsurface,illustratedasfollows

>CdO

graphene

þLi

þ

þe

À

T>CÀOLi

graphene

Onthebasisofelementalanalysis,theoxygencontentof

naturalgraphite-,artificialgraphite-,andcarbonfiber-derived

grapheneoxidesampleswere12.9,28.8,and20.8%,respectively.

TheFTIRspectraofthethreecathodematerials,shownin

Figure4b,indicatethatbothCellMandCellCexhibitmore

ÀCOOHand>

consistentwiththeobservationsthatCellsMandCexhibit

higherenergydensityandpowerdensitythanCellGprovided

thatLibondingwiththesefunctionalgroupsisaprimarylithium-

capturingmechanism.

Theroleofsurfacefunctionalgroupsinprovidinghigh

capacitancesingraphite-derivedgraphenewasfurtherillustrated

bycomparingthespecificcapacitanceofthegraphenematerial

beforeandafterexposuretoareductiontreatment(in4%H

2

and

96%N

2

at900°Cfor3h).AsshowninFigure4c,thegravimetric

currentofthegrapheneelectrodeinCellMdecreasedconsider-

ably(by65%)afterthisthermalreductiontreatmenttoreduce

acitanceofthereduced-

NGPcellis43mAh/gand50F/gatacurrentdensityof1A/g.

3789

/10.1021/nl2018492|NanoLett.2011,11,3785–3791

NanoLetters

Acomparisonoftheenergydensityandpowerdensitydatainthe

RagoneplotofFigure4dseemstosuggestthatthereductionin

oxygencontent(hence,thefunctionalgroupcontent)ledtoa

servationseemsto

beconsistentwiththeproposedlithiumstoragemechanismvia

thesurface-basedredoxreactionbetweenLiandfunctional

r,moreresearchisneededbeforeamore

definitivemechanismcanbevalidated.

ThesourceofextraLi

+

,Lipowder)implementedat

theanodeandtheLi

+

ions

+

pre-existinginliquidelectrolyte

providelargeamountsofLiionsthatcanbeshuttledbetween

twonanostructuredelectrodes,whicharefullycapableofcaptur-

themain

reasonwhythesurface-enabledcellsexhibitexceptionalenergy

densities.

Iftheseionscanmigrateatasufficientlyhighrate(short

migrationtimes),thentheultrahighpowerdensitywouldbe

brieflydiscussedbelow:Fordescribingtheion

transportinacell,theNernstÀPlanck(NP)equation(eqS4in

SupportingInformation)maybemoreaccurateascomparedto

theFick’equationprovidesthefluxofions

undertheinfluenceofbothanionicconcentrationgradientand

anelectricfiportingInformationprovidesseveral

significantobservations:

(1)Conventionallithiumionbatteriesfeaturingamicro-

meter-sizedgraphiteanodeandamicrometer-sizedLiFe-

PO

4

,7.29h)to

completetherequiredprocessesofintercalationinone

electrodeanddeintercalationintheotherelectrode

(SupportingInformationFigureS5a).Thisproblemof

alongdiffusiontimecanbepartiallyalleviatedbyusing

nanoscaledparticles.

(2)Forthefullysurface-mediatedcells,theelectrodethick-

tance,inthecaseof

usingfunctionalizedNGPastheelectrodes(Supporting

InformationFigureS8a),thetotalmigrationtimeofLi

ionsinliquidelectrolyteis1.27sifthecathodeandanode

areeach200μmthickandseparatoris100μ

migrationtimeisreducedto0.318siftheanode=

cathodethickness=100μmandseparatorthickness=

50μerimentalchargeanddischargetimedata

showninSupportingInformationFigureS9a,barecon-

llwithan

anodecenter-to-cathodecenterdistanceof250μm,an

ionmigrationtimeof0.88swasobtainedthrough

mentally,underhighcurrentdensity

conditionsthetotaldischargetimewasfoundtobe

between0.4and1.5s.

(3)Theaboveobservationsimplythatthesurface-enabled

cellsshouldhaveanextraordinarypowerdensity,parti-

er

densitiesobservedwithgraphene-enabled,fullysurface-

mediatedcells(withanelectrodethicknessof80μm,

Figure4e)arecomparableorslightlysuperiortothoseof

LBLf-CNT-basedbatteries

23

(thicknessof3μm)at

comparablecurrentdensities.

Therearegreatamountsofsuitablesitesavailableontheedges

ofagraphenesheet(inanNGP,AC,orCBnanostructure)ora

graphiteflake(inanexfoliatedgraphiteworm)toacceptfunc-

hlowercostofAC,CB,graphene,and

exfoliatedgraphite,andtheireaseofformingabulkelectrode

makethesenanocarbonsidealelectrodematerialsforthisnew

classofhigh-powerenergystoragecell.

Insummary,anewgenerationofenergystoragedeviceshas

beendevelopedwiththelithiumstoragemechanismandkinetics

ullysurface-enabled,lithiumion-exchanging

cellswiththeirmaterialsandstructuresyettobeoptimizedare

alreadycapableofstoringanenergydensityof160Wh/kg

is30timeshigherthanthatofconventionalelectric

cell

,

which

doublelayer(EDL)erdensityof

100kW/kg

cell

is10timeshigherthanthat(10kW/kg

EDLsupercapacitorsand100times

cell

)of

conventionalhigher

thanthat(1kW/kg

Figure4enicelydemonstrates

cell

)ofconventionallithium-ionbatteries.

thatthesurface-enabledcellsarea

classofenergystoragecellsbyitself,distinctfrombothsuper-

rkisneeded

tomoreclearlydifferentiatethedominantlithium-storage

mechanism(s)betweensurfaceredox,surfaceadsorption,

andsurfacedefecttrapping.

ASSOCIATEDCONTENT

b

SupportingInformation.

Descriptionofmaterialsand

terialisavailablefreeofchargeviatheInternet

at.

AUTHORINFORMATION

CorrespondingAuthor

*E-mail:(B.Z.J.)@;(A.Z.)

@.

ACKNOWLEDGMENT

chnologyInnovation

Program(TIP)Grant(ProgramManagers:Grinspon

u)isgratefullyacknowledged.

REFERENCES

mentals

(1)Conway,ochemical

1999.

andTechnologicalApplications;

Supercapacitors:

PlenumPublishers:

Scienti

New

ficFunda-

York,

(2)

(3)

Simon,

Miller,J.

P.;

R.;

Gogotsi,.2008,7,845–854.

C.

(4)

K.;Peng,

Kim,

H.;

D.K.;

Huggins,

Muralidharan,

Simon,e

R.A.;

P.;Lee,

2008

H.;

,321

Ru

,

651

o,R.;

–652.

Yang,Y.;Chan,

Cui,

(5)

Y.

Hu,

PANS

L.B.;

2009

Choi,

Cui,tt.2008,8,3948–3952.

,

J.W.;Yang,Y.;Jeong,S.;Mantia,L.F.;Cui,L.F.;

Taberna,

(6)Chmiola,J.;

106

Yushin,

,21490

G.;

–21494.

Gogotsi,Y.;Portet,C.;Simon,P.;

151

(7)Hu,

P.

C.

e

C.;Chen,

2006

W.

,313

C.;

,

Chang,

1760–1763.

.

Long,

(8)

,A281–A290.

2004,

J.

Fischer,

A.

Lett.

E.;Pettigrew,K.A.;Rolison,D.R.;Stroud,R.M.;

ochem.

(9)Amatucci,G.G.;

2007

Badway,

,7,281–286.

F.;DuPasquier,A.;

Nano

(10)Reddy,

Soc.

A.

2001

L.

,148,A930–A939.

Zheng,T.

2008

(11)

Lett.

B

本文标签: 技术 带来 使用

更多相关文章

配置计算机更新失败还原更改,技术编辑教您怎么解决配置windowsupdate失败还原更改...

5月前

当电脑出现提示说&#xff1a;配置windowsupdate失败还原更改&#xff0c;小伙伴你们知道要怎么处理吗&#xff1f;要是不知道的话&#xff0c;那也那必要感到尴尬哦&#xff0c;小

基站Wi-FiGPS定位技术!学到就是赚到!

5月前

在现代社会中&#xff0c;定位技术已经成为我们日常生活中不可或缺的一部分。无论是导航、社交、物流&#xff0c;还是应急救援&#xff0c;定位技术都在其中扮演着重要角色。今天特别分享定位相关示例&#xff

WiFi6技术介绍

5月前

转载于&#xff1a;https:www.sohua332514107_100128024&#xff0c;感谢&#xff01; 移动互联网时代&#xff0c;“WiFi”和“4G”一直是两个并存的名

Uber 新冠之殇:首席技术官Thuan Pham宣布离职,预计裁员5400人

5月前

新智元报道   来源&#xff1a;The Verge等 编辑&#xff1a;雅新 【新智元导读】新冠肺炎全球蔓延&#xff0c;美国已成为全球确诊人数最多的国家。Uber的乘车业务只减不增&#xff0c;预

2020年十大币预测_2020年的5种技术预测

5月前

2020年十大币预测 俗话说&#xff1a;“变化越多&#xff0c;它们保持不变的越多。”我发现这句话在技术方面尤其正确。 尽管它变得越来越复杂&#xff0c;但驱动技术创新的基本主题却在整个历史上一直保持不变

2018年度10大新兴技术:人工智能、量子计算、增强现实等

5月前

2018年度10大新兴技术&#xff1a;人工智能、量子计算、增强现实等 https:wwwblogsDicksonJYLp9684901.html 9月19日&#xff0c;世界经济论坛和《科学美国人》联合发布了

【2014】深度技术GHOST Win7 SP1 X64马年快速装机版

5月前

软件类型&#xff1a;国产 软件授权方式&#xff1a;共享 软件界面语言&#xff1a;简体中文 软件大小&#xff1a;3.62 GB 文件类型&#xff1a;.exe 软件等级&#xf

10大热点技术领域发展趋势分析

5月前

当前,在亚太乃至全球电信市场,最热门、最受大家最关注的技术和业务是什么?是3G、IMS?还是IPTV、手机电视?其未来的发展趋势如何?在光网络、网络安全、手机终端、OSS等传统领域,又有什么新的发展和机会?除此之外,无线宽带、运营级以太网等

[Web技术]用户信息管理系统

5月前

Spring-_-Bear 的 CSDN 博客导航文章目录 一、快速开始二、任务概述2.1 基本功能2.2 信息管理 三、分析设计四、功能展示4.1 用户登录4.2 用户注册4.3 重置密码4.4 主界面4.5 个人资料4.6 修改密码

【愚公系列】2024年02月 《网络安全应急管理与技术实践》 006-网络安全应急技术与实践(自查技术)

5月前

【愚公系列】2024年02月 《网络安全应急管理与技术实践》 007-网络安全应急技术与实践(网络层-网络架构)

5月前

2.Windows 界面技术发展现状

5月前

毫无疑问&#xff0c;Windows的流行推动了图形界面的发展&#xff0c;从最原始的Win32界面库到MFC&#xff0c;再到最近UWP界面库&#xff0c;Windows界面库的发展也代表了界面库和

Gartner发布物联网技术十大趋势,人工智能的最后一公里是边缘计算

5月前

新智元原创   编辑&#xff1a;三石、克雷格 【导读】边缘计算将为未来的终端提供AI能力&#xff0c;形成万物感知、万物互联、 万物智能的智能世界&#xff0c;打通AI的后期一公里。另外&#xff0c

OSINT技术情报精选·2024年7月第2周

5月前

OSINT技术情报精选·2024年7月第2周 2024.7.15版权声明&#xff1a;本文为博主chszs的原创文章&#xff0c;未经博主允许不得转载。 1、艾瑞咨询&#xff1a;《2024年中国数据中台行

交换机和路由器技术-31-扩展ACL

5月前

扩展ACL ACL应用规则 在一个接口一个方向上只能应用一个访问控制列表 access-list 1 deny host 192.168.1.1 access-list 2 deny host 192.168.2.1 int f00 i

华为路由器之BGP路由技术总结及配置命令

5月前

一、BGP的概念 BGP&#xff08;Border Gateway Protocol&#xff0c;边界网关协议&#xff09;是一个距离矢量路由协议&#xff0c;和传统的基于下一跳的IGP协议不同&am

python语言磁力搜索引擎源码公开,基于DHT协议,十二分有技术含量的技术博客...

5月前

之前我在写百度网盘爬虫&#xff0c;百度图片爬虫的时候答应网友说&#xff0c;抽时间要把ok搜搜的的源码公开&#xff0c;如今是时候兑现诺言了&#xff0c;下面就是爬虫的所有代码&#xff0c

解读软件架构的复杂性:业务和技术的双重挑战

4月前

目录 一、综述分析 二、业务复杂性分析 &#xff08;一&#xff09;领域建模 &#xff08;二&#xff09;领域分层 &#xff08;三&#xff09;服务粒度 &

WLAN与TCP的单播、组播及广播技术详解

4月前

1. 引言 在网络通信中&#xff0c; 单播&#xff08;Unicast&#xff09;、 组播&#xff08;Multicast&#xff09; 和 广播&#xff08;Broadcas

GPT 系列模型发展史:从 GPT 到 ChatGPT 的演进与技术细节

2月前

从 GPT 到 ChatGPT&#xff0c;OpenAI 用短短几年时间&#xff0c;彻底改变了自然语言处理&#xff08;NLP&#xff09;的格局。让我们一起回顾这段激动人心的技术演进史&#

发表评论

全部评论 0
暂无评论