admin 管理员组

文章数量: 1087139


2024年12月29日发(作者:使用ajax技术能带来什么优势)

/NanoLett

GrapheneSurface-EnabledLithiumIon-ExchangingCells:

Next-GenerationHigh-PowerEnergyStorageDevices

,*

,†

ChenguangLiu,

DavidNeff,

ZhenningYu,

,

WeiXiong,

and

ArunaZhamu*

,†,‡

NanotekInstruments,

AngstronMaterials,Inc.,1242McCookAvenue,Dayton,Ohio45404,UnitedStates

SupportingInformation

b

ABSTRACT:Hereinreportedisafundamentallynewstrategyforthedesignof

proachisbasedonthe

exchangeoflithiumionsbetweenthesurfaces(notthebulk)oftwonanos-

tructuredelectrodes,completelyobviatingtheneedforlithiumintercalationor

electrodes,massivegraphenesurfacesindirectcontact

withliquidelectrolytearecapableofrapidlyandreversiblycapturinglithiumions

throughsurfaceadsorptionand/evices,based

onunoptimizedmaterialsandconfiguration,arealreadycapableofstoringan

energydensityof160Wh/kg

cell

,whichis30timeshigherthanthat(5Wh/kg

cell

)

ofconventionalsymmetricsupercapacitorsandcomparabletothatofLi-ion

ealsocapableofdeliveringapowerdensityof100kW/kg

cell

,

whichis10timeshigherthanthat(10kW/kg

cell

)ofsupercapacitorsand100timeshigherthanthat(1kW/kg

cell

)ofLi-ionbatteries.

KEYWORDS:Supercapacitor,battery,graphene,energydensity,functionalgroup

ithiumionbatteriesandelectrochemicalcapacitors(super-

capacitors),separatelyorincombination,arebeingconsid-

eredforelectricvehicle(EV),renewableenergystorage,and

smartgridapplications.

1À5

Amajorscientificchallengeisto

eithersignificantlyincreasetheenergydensityofconventional

supercapacitorsordramaticallyimprovethepowerdensityof

lithiumionbatteries.

2,3

Supercapacitorsworkontwomainchargestoragemechan-

isms:surfaceionadsorption(electricdoublelayercapacitance,

EDL)andredoxreactions(pseudocapacitance).

1,2

Compared

withbatteries,supercapacitorsdeliverahigherpowerdensity,

offeramuchhighercycle-life,needaverysimplechargingcircuit,

r,supercapacitorsexhibit

,5Wh/kg

cell

forcommercial

activatedcarbon-basedsupercapacitorsversus100À150Wh/

kg

cell

forthecommercialLi-ionbattery,allbasedonthetotalcell

weight).

2

Previousattemptstoincreasethegravimetricenergyof

supercapacitorshaveincludedtheuseofelectrodematerialswith

enhancedgravimetriccapacitances

6

orthepseudocapacitance

providedbynanostructuredtransitionmetaloxides.

7À9

How-

ever,theprohibitivelyhighcostofruthenium-basedoxidesand

thecyclinginstabilityofmanganese-basedoxides

9À11

have

impededthecommercialapplicationofthesesupercapacitors.

In2006,ourresearchgroupreportedgraphene-basedelectrodes

forbothEDLandredoxsupercapacitors,

12

whichhassincebecome

atopicofintensiveresearch.

13À19

Significantprogresshasbeen

,redoxpairsbetweengraphene

oxideÀMnO

2

16

orgrapheneÀpolyaniline

17,18

)andionicliquid

electrolytewithahighoperatingvoltage

13,19

forimprovedenergy

r,thesesupercapacitorshaveyettoexhibita

r

2011AmericanChemicalSociety

L

sufficientlyhighenergydensityorpowerdensityforEVand

renewableenergyapplications.

Lithium-ionbatteriesoperateonFaradaicreactionsinthebulk

lkstoragemechanismprovidesa

muchhigherenergydensity(120À150Wh/kg

cell

)ascompared

r,storinglithiuminthebulkofa

materialimpliesthatlithiummustleavetheinteriorofacathode

activeparticleandeventuallyenterthebulkofananodeactive

particleduringrecharge,e

oftheextremelylowsolid-statediffusionrates,theseprocesses

ult,lithiumionbatteriesdeliveravery

lowpowerdensity(100À1000W/kg

cell

),requiringtypically

hoursforrecharge.

Severaleffortshavebeenmadetoincreasethepowerchar-

acteristicsoflithium-ionbatteriesbyreducingthedimensionsof

lithiumstoragematerialsdowntothenanometerscale,which

wouldreducethelithiumdiffusiontime.

20À23

However,nanos-

,nanoparticlesof

lithiumtitanateanodeorlithiumironphosphatecathode)are

stillnotcapableofdeliveringapowerdensitycomparabletothat

ofsupercapacitorelectrodes.

Recently,Leeetal.

24

usedchemicallyfunctionalizedmulti-

walledcarbonnanotubes(MW-CNTs)toreplaceactivated

carbon(AC)asacathodeactivematerialandLi

4

Ti

5

O

12

asan

anodeactivematerialinalithium-ioncapacitor(LIC)

LICcell,theLi

4

Ti

5

O

12

anodestillrequireslithiumintercalation

Received:May31,2011

Revised:August1,2011

Published:August08,2011

3785

/10.1021/nl2018492

|

NanoLett.2011,11,3785–3791

NanoLetters

Figure

enabled,

1.(a)Upperportionshowsthestructureofafully

current

Liion-exchangingcellwhenitismade,containingan

surface-

anode

source

separator,

(e.g.,

collectorandananostructuredmaterialattheanode,aLiion

cathode.

liquid

pieces

electrolyte,

ofLifoilorsurface-stabilizedLipowder),aporous

electrolyte

rstdischarge

Thelower

(Liis

left

ionized

portion

ananostructured

with

showsthestructure

functional

ofthis

material

cellafter

atthe

its

tured

portion

cathode

toreach

and

surface-borne

the

rapidlyreacting

functional

Liionsdiffusingthroughliquid

withthese

groups

groups).

inthe

Lower

nanostruc-

rapidly

showsthestructureofthiscellafterbeingrecharged(Liions

right

liquid

releasedfromthemassivecathodesurface,diffusingthrough

are

can

ions

serve

electrolytetoreachtheanodeside,wherethehugesurfaceareas

structure

canelectrodeposit

asasupportingsubstrateontowhichmassiveamountsofLi

provide

functional

accessibility

ofatreatedcarbon

concurrently,

byliquid

black

and(b)schematicoftheinternal

electrolyte

particlewith

in

poresorgatesopenedto

smallgraphene

groups

sheet

attached

canreadily

toanedge

react

or

with

surface

suchamannerthatthe

Liions.

ofanaromaticringor

intoandoutofthebulkofasolidparticle,whichremainsslow

andprovidesrelativelylowenergydensityandpowerdensity.

Leeetal.

24

alsoinvestigatedahalf-cellconfiguration,wherein

impressivepowerdensities,evenhigherthanthoseofsuper-

capacitors,r,theseexceptionalpower

densitiescouldonlybeachievedwithanelectrodethicknessof

0.3À3μmobtainedbythelayer-by-layer(LBL)approach.

Further,sincethespecificsurfaceareaofacurrentcollector

(typically,1m

2

/g)istoolowtoaccommodatemassive

amountsofreturninglithiumions,theoveralllithiumredeposi-

nfigurationis

alsoconducivetotheformationofdendritesuponrepeated

chargesanddischarges.

Anewparadigmishereinpresentedforconstructinghigh-

powerlithiumcells,whicharetotallygraphenesurface-mediated

orsurface-enabled,involvingexchangeofmassivelithiumions

betweentwonanostructuredgrapheneelectrodes.

AsillustratedinFigure1,boththecathodeandtheanodeare

porous,havinglargeamountsofgraphenesurfacesindirect

contactwithliquidelectrolyte,therebyenablingfastanddirect

surfaceadsorptionoflithiumionsand/orsurfacefunctional

group-lithiuminteraction,andobviatingtheneedforintercala-

ecellismade,particlesorfoiloflithiummetalare

implementedattheanode(upperportionofFigure1a),which

areionizedduringthefirstdischargecycle,supplyingalarge

onsmigratetothenanostruc-

turedcathodethroughliquidelectrolyte,enteringtheporesand

reachingthesurfacesintheinteriorofthecathodewithout

havingtoundergosolid-stateintercalation(lowerleftdiagramin

Figure1a).Whenthecellisrecharged,amassivefluxoflithium

ionsarequicklyreleasedfromthelargeamountofcathode

surface,gesurfaceareaof

thenanostructuredanodeenableconcurrentandhigh-rate

depositionoflithiumions(lowerrightportionofFigure1a),

re-establishinganelectrochemicalpotentialdifferencebetween

thelithium-decoratedanodeandthecathode.

Aparticularlyusefulnanostructuredelectrodematerialisthe

nanographeneplatelet(NGP),whichreferstoeitherasingle-

e-

layergraphenesheetisa2Dhexagonlatticeofcarbonatoms

covalentlybondedalongtwoplanedirections.

25À28

Inthisstudy,bothoxidizedandreducedsingle-layerand

multilayergraphenewerepreparedfromnaturalgraphite(N),

petroleumpitch-derivedartificialgraphite(M),micrometer-

scaledgraphitefibers(C),exfoliatedgraphite(GorEG),AC,

carbonblack(CB),andchemicallytreatedcarbonblack(t-CB).

ACandCBcontainnarrowergraphenesheetsoraromaticrings

asabuildingblock,whilegraphiteandgraphitefiberscontain

icrostructuresallmustbeex-

foliated(toincreaseintergraphenespacingingraphite)or

activated(toopenupnanogatesorpores,Figure1b)toallow

liquidelectrolytetoaccessmoregrapheneedgesandsurfaces

(experimentaldetailsprovidedinSupportingInformation).

Coin-sizecellswereconstructedtotestthesenanostructured

odeswerepreparedwith85%active

material,5%conductiveadditive,and10%swere

calculatedpertotalcathodematerialandpertotalcellweight

(approximatedascathodeweightÂ5).Thesampleswere

thermallyexfoliatedgraphite(CellG),graphenefromchemically

reducedgrapheneoxide(CellN),graphenefromoxidized

artificialmesophasegraphite(CellM),graphenefromoxidized

3786

/10.1021/nl2018492|NanoLett.2011,11,3785–3791

NanoLetters

Figure2.(a)AFMimageofsingle-layergrapheneoxidesheetsfromnaturalgraphite,(b)single-layergraphenesheetsstackedoverthesample-

supportingTEMmicrogrids,and(c)scanningelectronmicroscopyimageofexfoliatedgraphite.

carbonfiber(CellC),carbonblack(CellCB),oxidizedcarbon

black(t-CB),andactivatedcarbon(CellAC).Thesematerials

,>CdOandÀCOOH)that

-

phenoxidesheetsaremostlysingle-layered,basedontheresults

ofcombinedBrunauerÀEmmettÀTeller(BET)surfaceanalysis,

atomicforcemicroscopy(AFM)(Figure2a),andtransmission

electronmicroscopy(TEM)(Figure2b).Theconstituent

graphiteflakesinagraphitewormorexfoliatedgraphite

(Figure2c)remaininterconnectedasanetworkof3Delec-

tron-conductingpaths,andthemeso-andmacroscaledpores

betweenflakewallsareeasilyaccessibletoliquidelectrolyte.

TheGalvanostaticcharge/dischargecurvesandcyclicvoltam-

metry(CV)diagramsofCellsM,C,G,andNareshownin

Figure3a,b,rredoxpeakisobservedin

enotedthattheCVcurvesofboththe

conventionalpseudocapacitorsandlithium-ionbatteriestendto

exhibitastrongredoxpeakduetoslowerFaradaicredox

,

polyanilineinapseudocapacitor,lithiumtitanateinalithium-

ionbattery,andLi

x

C

6

O

6

inanorganicelectrodebattery

29

).The

lackofastrong,well-definedredoxreactionpeakintheCVsof

ourfullysurface-mediateddevicesandtheLBLCNTdeviceof

Lee,etal.

24

mightbeduetothefollowingreasons:(1)the

reactionbetweensurfacefunctionalgroupsandultrasmall

lithiumionsarerelativelyfastandoflowactivationbarrier

(Figure1b);

24,25,30À32

(2)fastadsorptionofLionabenzene

ringcenterofagraphenesheet;

33À35

(3)fasttrappingofLiions

ingraphenedefectsites;

36

and/or(4)electricdouble-layer

lelithium-capturingmechanismsofgraphene

surfacesarefurtherdiscussedinSupportingInformation.

,CellM)

withaspecificcapacityof127mAh/gatacurrentdensityof1A/g,

reachinganenergydensityof85Wh/kg

cell

(Figure3c)ata

currentdensityof0.1A/g,whichis17timeshigherthanthe

typically5Wh/kg

cell

ofcommercialAC-basedsymmetricsuper-

l-levelenergydensityandpowerdensitydata

presentedinFigure3c,dwereobtainedbydividingthecorre-

spondingvalues(basedonsingle-electrodeweight)inSupport-

ingInformationFigureS12andS13byafactorof5.

3787

/10.1021/nl2018492|NanoLett.2011,11,3785–3791

NanoLetters

Figure3.(a)Charge/dischargecurvesofthreesurface-enabledcells(M=NGPfrommesophasecarbon-derivedgraphite,C=NGPfromcarbonfibers,

G=fromexfoliatednaturalgraphite),andN=chargecurrentdensityis1A/g.(b)The

CVplotsofthesamecellsatthescanrate25mV/s,(c,d)RagoneplotsoftheseandCB,t-CB,andACcellswiththickcathodes.

Anothergraphenesurface-mediatedcell(CellN,Figure3d)

exhibitsanevenhigherenergydensityof160Wh/kg

cell

,

rgydensity

ofCell-Nmaintainsavalueover51.2Wh/kg

cell

evenata

currentdensityashighas10A/g,deliveringapowerdensityof

4.55kW/kg

cell

.ThepowerdensityofcommercialAC-based

symmetricsupercapacitorsistypicallyintherangeof1À

10kW/kg

cell

atanenergydensityof5Wh/kg

cell

,Thisimplies

that,comparedwithaconventionalsupercapacitoratthesame

powerdensity,thesurface-mediateddevicescandeliver>10

timestheenergydensity.

ThepowerdensityofCellNis25.6kW/kg

cell

at50A/gwith

anenergydensityof24Wh/kg

cell

.Thepowerdensityincreases

to93.7kW/kg

cell

at200A/gwithanenergydensityof12Wh/

kg

cell

(Figure3d).Thispowerdensityis1orderofmagnitude

higherthanthatofconventionalsupercapacitorsthatarenoted

fortheirhighpowerdensities,and2À3ordersofmagnitude

higherthanthat(typically0.1À1.0kW/kg

cell

)ofconventional

atahaveclearlydemonstratedthat

thesurface-enabledcellsareaclassofenergystoragecellsby

itself,distinctfrombothconventionalsupercapacitorsand

lithium-ionbatteries.

Figure3bcontainsacomparisonofCVdatashowingthatthe

carbonfiber-derivedgraphene(CellC)andmesophasecarbon-

derivedgraphene(M)havebetterperformancethanthermally

exfoliatedgraphite(G)in

linewiththeobservationthatCandMexhibitedsignificantly

higherÀCOOHandÀCdOcontents(Figure4b),whichare

capableofcapturingLiionsviaafastsurfaceredoxreaction.

Figure3dindicatesthattheenergydensityandpowerdensity

valuesofCBcanbesignificantlyincreasedbysubjectingCBtoa

treatmentthatinvolvesanexposuretoamixtureofsulfuricacid,

sodiumnitrate,

surfaceareawasfoundtoincreasefromapproximately122m

2

/g

toapproximately300m

2

/g,resultinginacapacityincreasefrom

8.47to46.63mAh/g).AlthoughAChasahighspecificsurface

area(1200m

2

/g),asignificantproportionoftheporesinACare

microscopicpores(<1nm)and,hence,arenotaccessibleto

,CellACdoesnotexhibithigher

powerandenergydensitiescomparedtoNGPcells.

ThecyclingperformanceforMcellisshowninFigure4aand

,NandAC)isinSupportingInformation

ementsweretakenonceevery100cycles

duringa0.1A/gchargeanddischarge,followingthesame

methodwithliterature

24

(forcomparisonpurpose).Allother

cycleswererunatanacceleratedrateof1A/1000cycles,

theretentionofcapacityremainsabove95%,whichillustratesthe

labilitycanbefurther

enotedthatmore

than30graphenesurface-enabledcellshavebeeninvestigatedfor

morethan2000cycles,andwehavefoundnoevidenceto

indicatetheinitiationofanydendrite-likestructure.

Thepresenceoffunctionalgroups,suchasÀCOOHand

>CdO,inchemicallypreparedgrapheneoxidehavebeenwell

documented.

37,38

Theformationofthesefunctionalgroupsisa

naturalresultoftheoxidizingreactionsofgraphitebysulfuric

,nitricacidandpotassium

permanganate).Bothunseparatedgraphitewormsandthe

separatedNGPshavesurface-oredge-bornefunctionalgroups.

Carbonylgroups(>CdO)inorganicandpolymericelectrodes

werefoundtobecapableofreadilyreactingwithlithiumionsto

formredoxpairs.

24,29

AccordingtoLeeetal.,

24

ÀCOOHgroups

onCNTsurfacesarecapableofreversiblyandrapidlyforminga

redoxpairwithalithiumionduringthechargeanddischarge

3788

/10.1021/nl2018492|NanoLett.2011,11,3785–3791

NanoLetters

Figure4.(a)ementsweretakenonceevery100cyclesduringa0.1A/gchargeand

ercycleswererunatanacceleratedrateof1A/ndofthetest,thecapacitywas95%entionmaybe

furtherimprovedwithoptimizationofthematerialpreparationprocedure.(b)FTIRspectraofthethreematerials,indicatingthatbothexfoliated

mesophasecarbon-andcarbon-fiber-basedelectrodes(MandC)exhibitmoreÀCOOHand>CdOgroupscomparedtotheexfoliatedgraphitesample

(G).(c)CyclicvoltammetryplotsofoxidizedMcellandapartiallyreducedMcell.(d)RagoneplotofoxidizedMcellandapartiallyreducedMcell,

indicatingsignificantlyreducedcapacity,energydensity,andpowerdensitywhenasignificantproportionofthefunctionalgroupswaseliminated.

(e)TheRagoneplotsofgraphenesurface-enabledLiion-exchangingcellswithdifferentelectrodethicknesses.

nceivablethatLiionsalsocanreactwith

the>CdOandÀCOOHgroupsonthegrapheneplanesor

edgesofseparatedgraphenesheets,theunseparatedgraphene

sheetsthatconstitutegraphiteworms,andthearomaticrings

(smallgraphenesheets)inACortreatedCB.

ThetypicalgravimetriccapacitanceofNGPelectrodesinthe

voltagerange3À4.2VversusLi(withacomparablevoltagescale

of0to∼1.2Vversusstandardhydrogenelectrode(SHE))is

150À350F/arbonyl(>CdO)groups,forinstance,can

bereducedbyLi

+

andreversiblyoxidized,capacitanceobtained

canbeattributedtotheFaradaicreactionsofoxygenonthe

grapheneedgeorsurface,illustratedasfollows

>CdO

graphene

þLi

þ

þe

À

T>CÀOLi

graphene

Onthebasisofelementalanalysis,theoxygencontentof

naturalgraphite-,artificialgraphite-,andcarbonfiber-derived

grapheneoxidesampleswere12.9,28.8,and20.8%,respectively.

TheFTIRspectraofthethreecathodematerials,shownin

Figure4b,indicatethatbothCellMandCellCexhibitmore

ÀCOOHand>

consistentwiththeobservationsthatCellsMandCexhibit

higherenergydensityandpowerdensitythanCellGprovided

thatLibondingwiththesefunctionalgroupsisaprimarylithium-

capturingmechanism.

Theroleofsurfacefunctionalgroupsinprovidinghigh

capacitancesingraphite-derivedgraphenewasfurtherillustrated

bycomparingthespecificcapacitanceofthegraphenematerial

beforeandafterexposuretoareductiontreatment(in4%H

2

and

96%N

2

at900°Cfor3h).AsshowninFigure4c,thegravimetric

currentofthegrapheneelectrodeinCellMdecreasedconsider-

ably(by65%)afterthisthermalreductiontreatmenttoreduce

acitanceofthereduced-

NGPcellis43mAh/gand50F/gatacurrentdensityof1A/g.

3789

/10.1021/nl2018492|NanoLett.2011,11,3785–3791

NanoLetters

Acomparisonoftheenergydensityandpowerdensitydatainthe

RagoneplotofFigure4dseemstosuggestthatthereductionin

oxygencontent(hence,thefunctionalgroupcontent)ledtoa

servationseemsto

beconsistentwiththeproposedlithiumstoragemechanismvia

thesurface-basedredoxreactionbetweenLiandfunctional

r,moreresearchisneededbeforeamore

definitivemechanismcanbevalidated.

ThesourceofextraLi

+

,Lipowder)implementedat

theanodeandtheLi

+

ions

+

pre-existinginliquidelectrolyte

providelargeamountsofLiionsthatcanbeshuttledbetween

twonanostructuredelectrodes,whicharefullycapableofcaptur-

themain

reasonwhythesurface-enabledcellsexhibitexceptionalenergy

densities.

Iftheseionscanmigrateatasufficientlyhighrate(short

migrationtimes),thentheultrahighpowerdensitywouldbe

brieflydiscussedbelow:Fordescribingtheion

transportinacell,theNernstÀPlanck(NP)equation(eqS4in

SupportingInformation)maybemoreaccurateascomparedto

theFick’equationprovidesthefluxofions

undertheinfluenceofbothanionicconcentrationgradientand

anelectricfiportingInformationprovidesseveral

significantobservations:

(1)Conventionallithiumionbatteriesfeaturingamicro-

meter-sizedgraphiteanodeandamicrometer-sizedLiFe-

PO

4

,7.29h)to

completetherequiredprocessesofintercalationinone

electrodeanddeintercalationintheotherelectrode

(SupportingInformationFigureS5a).Thisproblemof

alongdiffusiontimecanbepartiallyalleviatedbyusing

nanoscaledparticles.

(2)Forthefullysurface-mediatedcells,theelectrodethick-

tance,inthecaseof

usingfunctionalizedNGPastheelectrodes(Supporting

InformationFigureS8a),thetotalmigrationtimeofLi

ionsinliquidelectrolyteis1.27sifthecathodeandanode

areeach200μmthickandseparatoris100μ

migrationtimeisreducedto0.318siftheanode=

cathodethickness=100μmandseparatorthickness=

50μerimentalchargeanddischargetimedata

showninSupportingInformationFigureS9a,barecon-

llwithan

anodecenter-to-cathodecenterdistanceof250μm,an

ionmigrationtimeof0.88swasobtainedthrough

mentally,underhighcurrentdensity

conditionsthetotaldischargetimewasfoundtobe

between0.4and1.5s.

(3)Theaboveobservationsimplythatthesurface-enabled

cellsshouldhaveanextraordinarypowerdensity,parti-

er

densitiesobservedwithgraphene-enabled,fullysurface-

mediatedcells(withanelectrodethicknessof80μm,

Figure4e)arecomparableorslightlysuperiortothoseof

LBLf-CNT-basedbatteries

23

(thicknessof3μm)at

comparablecurrentdensities.

Therearegreatamountsofsuitablesitesavailableontheedges

ofagraphenesheet(inanNGP,AC,orCBnanostructure)ora

graphiteflake(inanexfoliatedgraphiteworm)toacceptfunc-

hlowercostofAC,CB,graphene,and

exfoliatedgraphite,andtheireaseofformingabulkelectrode

makethesenanocarbonsidealelectrodematerialsforthisnew

classofhigh-powerenergystoragecell.

Insummary,anewgenerationofenergystoragedeviceshas

beendevelopedwiththelithiumstoragemechanismandkinetics

ullysurface-enabled,lithiumion-exchanging

cellswiththeirmaterialsandstructuresyettobeoptimizedare

alreadycapableofstoringanenergydensityof160Wh/kg

is30timeshigherthanthatofconventionalelectric

cell

,

which

doublelayer(EDL)erdensityof

100kW/kg

cell

is10timeshigherthanthat(10kW/kg

EDLsupercapacitorsand100times

cell

)of

conventionalhigher

thanthat(1kW/kg

Figure4enicelydemonstrates

cell

)ofconventionallithium-ionbatteries.

thatthesurface-enabledcellsarea

classofenergystoragecellsbyitself,distinctfrombothsuper-

rkisneeded

tomoreclearlydifferentiatethedominantlithium-storage

mechanism(s)betweensurfaceredox,surfaceadsorption,

andsurfacedefecttrapping.

ASSOCIATEDCONTENT

b

SupportingInformation.

Descriptionofmaterialsand

terialisavailablefreeofchargeviatheInternet

at.

AUTHORINFORMATION

CorrespondingAuthor

*E-mail:(B.Z.J.)@;(A.Z.)

@.

ACKNOWLEDGMENT

chnologyInnovation

Program(TIP)Grant(ProgramManagers:Grinspon

u)isgratefullyacknowledged.

REFERENCES

mentals

(1)Conway,ochemical

1999.

andTechnologicalApplications;

Supercapacitors:

PlenumPublishers:

Scienti

New

ficFunda-

York,

(2)

(3)

Simon,

Miller,J.

P.;

R.;

Gogotsi,.2008,7,845–854.

C.

(4)

K.;Peng,

Kim,

H.;

D.K.;

Huggins,

Muralidharan,

Simon,e

R.A.;

P.;Lee,

2008

H.;

,321

Ru

,

651

o,R.;

–652.

Yang,Y.;Chan,

Cui,

(5)

Y.

Hu,

PANS

L.B.;

2009

Choi,

Cui,tt.2008,8,3948–3952.

,

J.W.;Yang,Y.;Jeong,S.;Mantia,L.F.;Cui,L.F.;

Taberna,

(6)Chmiola,J.;

106

Yushin,

,21490

G.;

–21494.

Gogotsi,Y.;Portet,C.;Simon,P.;

151

(7)Hu,

P.

C.

e

C.;Chen,

2006

W.

,313

C.;

,

Chang,

1760–1763.

.

Long,

(8)

,A281–A290.

2004,

J.

Fischer,

A.

Lett.

E.;Pettigrew,K.A.;Rolison,D.R.;Stroud,R.M.;

ochem.

(9)Amatucci,G.G.;

2007

Badway,

,7,281–286.

F.;DuPasquier,A.;

Nano

(10)Reddy,

Soc.

A.

2001

L.

,148,A930–A939.

Zheng,T.

2008

(11)

Lett.

B

本文标签: 技术 带来 使用

更多相关文章

【ChatGPT技术应用分享】如何使用ChatGPT构建一个Web应用程序?

4月前

围绕ChatGPT的最大卖点之一是它可以成为一种有效的编程工具。其想法是这样的&#xff1a;您用自然语言描述需求&#xff0c;该聊天机器人生成满足该需求的代码。但是ChatGPT在这方面到底有多好呢&#xff1f

基站Wi-FiGPS定位技术详解~ 带你轻松掌握!

4月前

基站、Wi-Fi和GPS定位技术在现代社会的各个领域都发挥着重要作用&#xff0c;为人们提供了便捷的服务&#xff0c;今天特别分享定位相关示例&#xff0c;欢迎大家一起来探讨。 一、基站Wi-FiGPS定位

WiFi探针技术

4月前

一、什么是WiFi 探针技术 &#xff1f; WiFi 探针技术是指基于WiFi探测技术来识别AP(无线访问接入点)附近已开启 WiFi 的智能手机或者WiFi终端&#xff08;笔记本&#xff0c;平板电脑等

【AIGC】ChatGPT是如何思考的:探索CoT思维链技术的奥秘

4月前

博客主页&#xff1a;[小ᶻ☡꙳ᵃⁱᵍᶜ꙳]本文专栏:AIGC | ChatGPT文章目录 &#x1f4af;前言&#x1f4af;什么是CoT思维链CoT思维链的背景与技术发展需求 &#x

一文了解研究大脑的技术

4月前

本文首发在个人博客上(7988888.xyz),此文章中所有链接均通过博客进行访问。 这个清明节没有回家,没什么事情可做,写作、看书、玩游戏,生活总是这么平淡无奇,看着朋友圈的这里堵了,那里堵了,你们的烦恼和快乐,我依然体会不到,也许,行

软件开发必须掌握的十大技术

4月前

能跟上关键技术的发展&#xff0c;是你在就业市场和未来保持优势的最佳手段。你对我们列出的十门技术精通吗&#xff1f;哪怕是大略精通&#xff1f;     罗素·琼斯&#xff0c;执行编辑   2002

2024年Python3十大经典错误及解决办法(2),海尔技术岗面试

4月前

最后 不知道你们用的什么环境&#xff0c;我一般都是用的Python3.6环境和pycharm解释器&#xff0c;没有软件&#xff0c;或者没有资料&#xff0c;没人解答问题&#xff0c;

【深度】区块链技术安全威胁分析(附下载)

4月前

【解码区块链】专题文章一 区块链技术安全威胁分析 2020年4月20日&#xff0c;国家发改委明确“新基建”定义和范围&#xff0c;表态“区块链”被纳入其中。为深入探索区块链技术的发展应用&#xff0c;挖掘对零

2018年度10大新兴技术:人工智能、量子计算、增强现实等

4月前

2018年度10大新兴技术&#xff1a;人工智能、量子计算、增强现实等 https:wwwblogsDicksonJYLp9684901.html 9月19日&#xff0c;世界经济论坛和《科学美国人》联合发布了

十大注定要被淘汰的安全技术

4月前

你是否曾有过这样的经历&#xff1a;启动软盘上的写入保护开关&#xff0c;以防止启动病毒和恶意覆写&#xff1b;关闭调制解调器&#xff0c;以防止黑客在晚上打来电话&#xff1b;卸载ansi

(转)《麻省理工科技评论》发布2017年全球十大突破性技术榜单

4月前

https:mp.weixin.qqsMkpgKhXWaCBD4_LkjpMbOw 科大讯飞、百度、驭势科技、乐视、地平线、中科创星、华创资本、和米资本、地平线、易宝支付、清华大学、中国科技大学、中科院、中科晶云、合生基因、元码基

交换机与路由器技术-04-远程管理交换机

4月前

目录 一、通过远程连接管理设备 1.1 telnet介绍 1.2 SSH介绍 1.3 Telnet远程管理思路 1.配置IP地址 2.配置设备连接终端&#xff08;vty终端&#xff09; 3.配置特权模式密

交换机和路由器技术-04-远程管理交换机

4月前

目录 一、远程管理交换机 1.1Telnet和SSH介绍 方式一&#xff1a;Telnet 方式二&#xff1a;SSH 1.2实现的思路 1.3Telnet配置步骤 第一步&#xff1a;配置交换机虚

MIT Technology Review 2020年“十大突破性技术”解读 【中国科学基金】2020年第3期发布...

4月前

来源&#xff1a;国家自然科学基金委员会 MIT Technology Review  2020年“十大突破性技术”解读 &#xff3b;编者按&#xff3d;  2020年2月26日&#xff0c;MIT

风险解码:数字技术如何重塑风控游戏规则?

3月前

“IT有得聊”是机械工业出版社旗下IT专业资讯和服务平台&#xff0c;致力于帮助读者在广义的IT领域里&#xff0c;掌握更专业、更实用的知识与技能&#xff0c;快速提升职场竞争力。 点击蓝色微信名可快速关注我们

搜索引擎技术资源篇-2(转载)

3月前

搜索引擎的策略都是采用服务器群集和分布式计算技术。(搜索引擎技术资源篇-1)经典文章:  google早期论文 The Anatomy of a Large-Scale Hypertextual Web Search Engine &

大数据技术15:大数据常见术语汇总

3月前

前言&#xff1a;大数据的出现带来了许多新的术语&#xff0c;但这些术语往往比较难以理解。因此&#xff0c;通过本文整理了大数据开发工程师经常会接触到的名词和概念&#xff0c;了解这些专有名词对于数据

WLAN与TCP的单播、组播及广播技术详解

2月前

1. 引言 在网络通信中&#xff0c; 单播&#xff08;Unicast&#xff09;、 组播&#xff08;Multicast&#xff09; 和 广播&#xff08;Broadcas

win10开启虚拟化服务器,win10怎么开启virtualization technology虚拟化技术

2月前

virtualization technology虚拟化技术可以让一个CPU工作起来就像多个CPU并行运行&#xff0c;从而使得在一部电脑内同时运行多个操作系统&#xff0c;但是很多win10系统用户不知道要怎么开启vi

GPT 系列模型发展史:从 GPT 到 ChatGPT 的演进与技术细节

21天前

从 GPT 到 ChatGPT&#xff0c;OpenAI 用短短几年时间&#xff0c;彻底改变了自然语言处理&#xff08;NLP&#xff09;的格局。让我们一起回顾这段激动人心的技术演进史&#

发表评论

全部评论 0
暂无评论