admin 管理员组文章数量: 1087840
2024年12月29日发(作者:使用ajax技术能带来什么优势)
/NanoLett
GrapheneSurface-EnabledLithiumIon-ExchangingCells:
Next-GenerationHigh-PowerEnergyStorageDevices
,*
,†
ChenguangLiu,
†
DavidNeff,
†
ZhenningYu,
‡
,
‡
WeiXiong,
‡
and
ArunaZhamu*
,†,‡
†
NanotekInstruments,
‡
AngstronMaterials,Inc.,1242McCookAvenue,Dayton,Ohio45404,UnitedStates
SupportingInformation
b
ABSTRACT:Hereinreportedisafundamentallynewstrategyforthedesignof
proachisbasedonthe
exchangeoflithiumionsbetweenthesurfaces(notthebulk)oftwonanos-
tructuredelectrodes,completelyobviatingtheneedforlithiumintercalationor
electrodes,massivegraphenesurfacesindirectcontact
withliquidelectrolytearecapableofrapidlyandreversiblycapturinglithiumions
throughsurfaceadsorptionand/evices,based
onunoptimizedmaterialsandconfiguration,arealreadycapableofstoringan
energydensityof160Wh/kg
cell
,whichis30timeshigherthanthat(5Wh/kg
cell
)
ofconventionalsymmetricsupercapacitorsandcomparabletothatofLi-ion
ealsocapableofdeliveringapowerdensityof100kW/kg
cell
,
whichis10timeshigherthanthat(10kW/kg
cell
)ofsupercapacitorsand100timeshigherthanthat(1kW/kg
cell
)ofLi-ionbatteries.
KEYWORDS:Supercapacitor,battery,graphene,energydensity,functionalgroup
ithiumionbatteriesandelectrochemicalcapacitors(super-
capacitors),separatelyorincombination,arebeingconsid-
eredforelectricvehicle(EV),renewableenergystorage,and
smartgridapplications.
1À5
Amajorscientificchallengeisto
eithersignificantlyincreasetheenergydensityofconventional
supercapacitorsordramaticallyimprovethepowerdensityof
lithiumionbatteries.
2,3
Supercapacitorsworkontwomainchargestoragemechan-
isms:surfaceionadsorption(electricdoublelayercapacitance,
EDL)andredoxreactions(pseudocapacitance).
1,2
Compared
withbatteries,supercapacitorsdeliverahigherpowerdensity,
offeramuchhighercycle-life,needaverysimplechargingcircuit,
r,supercapacitorsexhibit
,5Wh/kg
cell
forcommercial
activatedcarbon-basedsupercapacitorsversus100À150Wh/
kg
cell
forthecommercialLi-ionbattery,allbasedonthetotalcell
weight).
2
Previousattemptstoincreasethegravimetricenergyof
supercapacitorshaveincludedtheuseofelectrodematerialswith
enhancedgravimetriccapacitances
6
orthepseudocapacitance
providedbynanostructuredtransitionmetaloxides.
7À9
How-
ever,theprohibitivelyhighcostofruthenium-basedoxidesand
thecyclinginstabilityofmanganese-basedoxides
9À11
have
impededthecommercialapplicationofthesesupercapacitors.
In2006,ourresearchgroupreportedgraphene-basedelectrodes
forbothEDLandredoxsupercapacitors,
12
whichhassincebecome
atopicofintensiveresearch.
13À19
Significantprogresshasbeen
,redoxpairsbetweengraphene
oxideÀMnO
2
16
orgrapheneÀpolyaniline
17,18
)andionicliquid
electrolytewithahighoperatingvoltage
13,19
forimprovedenergy
r,thesesupercapacitorshaveyettoexhibita
r
2011AmericanChemicalSociety
L
sufficientlyhighenergydensityorpowerdensityforEVand
renewableenergyapplications.
Lithium-ionbatteriesoperateonFaradaicreactionsinthebulk
lkstoragemechanismprovidesa
muchhigherenergydensity(120À150Wh/kg
cell
)ascompared
r,storinglithiuminthebulkofa
materialimpliesthatlithiummustleavetheinteriorofacathode
activeparticleandeventuallyenterthebulkofananodeactive
particleduringrecharge,e
oftheextremelylowsolid-statediffusionrates,theseprocesses
ult,lithiumionbatteriesdeliveravery
lowpowerdensity(100À1000W/kg
cell
),requiringtypically
hoursforrecharge.
Severaleffortshavebeenmadetoincreasethepowerchar-
acteristicsoflithium-ionbatteriesbyreducingthedimensionsof
lithiumstoragematerialsdowntothenanometerscale,which
wouldreducethelithiumdiffusiontime.
20À23
However,nanos-
,nanoparticlesof
lithiumtitanateanodeorlithiumironphosphatecathode)are
stillnotcapableofdeliveringapowerdensitycomparabletothat
ofsupercapacitorelectrodes.
Recently,Leeetal.
24
usedchemicallyfunctionalizedmulti-
walledcarbonnanotubes(MW-CNTs)toreplaceactivated
carbon(AC)asacathodeactivematerialandLi
4
Ti
5
O
12
asan
anodeactivematerialinalithium-ioncapacitor(LIC)
LICcell,theLi
4
Ti
5
O
12
anodestillrequireslithiumintercalation
Received:May31,2011
Revised:August1,2011
Published:August08,2011
3785
/10.1021/nl2018492
|
NanoLett.2011,11,3785–3791
NanoLetters
Figure
enabled,
1.(a)Upperportionshowsthestructureofafully
current
Liion-exchangingcellwhenitismade,containingan
surface-
anode
source
separator,
(e.g.,
collectorandananostructuredmaterialattheanode,aLiion
cathode.
liquid
pieces
electrolyte,
ofLifoilorsurface-stabilizedLipowder),aporous
fi
electrolyte
rstdischarge
Thelower
(Liis
left
ionized
portion
ananostructured
with
showsthestructure
functional
ofthis
material
cellafter
atthe
its
tured
portion
cathode
toreach
and
surface-borne
the
rapidlyreacting
functional
Liionsdiffusingthroughliquid
withthese
groups
groups).
inthe
Lower
nanostruc-
rapidly
showsthestructureofthiscellafterbeingrecharged(Liions
right
liquid
releasedfromthemassivecathodesurface,diffusingthrough
are
can
ions
serve
electrolytetoreachtheanodeside,wherethehugesurfaceareas
structure
canelectrodeposit
asasupportingsubstrateontowhichmassiveamountsofLi
provide
functional
accessibility
ofatreatedcarbon
concurrently,
byliquid
black
and(b)schematicoftheinternal
electrolyte
particlewith
in
poresorgatesopenedto
smallgraphene
groups
sheet
attached
canreadily
toanedge
react
or
with
surface
suchamannerthatthe
Liions.
ofanaromaticringor
intoandoutofthebulkofasolidparticle,whichremainsslow
andprovidesrelativelylowenergydensityandpowerdensity.
Leeetal.
24
alsoinvestigatedahalf-cellconfiguration,wherein
impressivepowerdensities,evenhigherthanthoseofsuper-
capacitors,r,theseexceptionalpower
densitiescouldonlybeachievedwithanelectrodethicknessof
0.3À3μmobtainedbythelayer-by-layer(LBL)approach.
Further,sincethespecificsurfaceareaofacurrentcollector
(typically,1m
2
/g)istoolowtoaccommodatemassive
amountsofreturninglithiumions,theoveralllithiumredeposi-
nfigurationis
alsoconducivetotheformationofdendritesuponrepeated
chargesanddischarges.
Anewparadigmishereinpresentedforconstructinghigh-
powerlithiumcells,whicharetotallygraphenesurface-mediated
orsurface-enabled,involvingexchangeofmassivelithiumions
betweentwonanostructuredgrapheneelectrodes.
AsillustratedinFigure1,boththecathodeandtheanodeare
porous,havinglargeamountsofgraphenesurfacesindirect
contactwithliquidelectrolyte,therebyenablingfastanddirect
surfaceadsorptionoflithiumionsand/orsurfacefunctional
group-lithiuminteraction,andobviatingtheneedforintercala-
ecellismade,particlesorfoiloflithiummetalare
implementedattheanode(upperportionofFigure1a),which
areionizedduringthefirstdischargecycle,supplyingalarge
onsmigratetothenanostruc-
turedcathodethroughliquidelectrolyte,enteringtheporesand
reachingthesurfacesintheinteriorofthecathodewithout
havingtoundergosolid-stateintercalation(lowerleftdiagramin
Figure1a).Whenthecellisrecharged,amassivefluxoflithium
ionsarequicklyreleasedfromthelargeamountofcathode
surface,gesurfaceareaof
thenanostructuredanodeenableconcurrentandhigh-rate
depositionoflithiumions(lowerrightportionofFigure1a),
re-establishinganelectrochemicalpotentialdifferencebetween
thelithium-decoratedanodeandthecathode.
Aparticularlyusefulnanostructuredelectrodematerialisthe
nanographeneplatelet(NGP),whichreferstoeitherasingle-
e-
layergraphenesheetisa2Dhexagonlatticeofcarbonatoms
covalentlybondedalongtwoplanedirections.
25À28
Inthisstudy,bothoxidizedandreducedsingle-layerand
multilayergraphenewerepreparedfromnaturalgraphite(N),
petroleumpitch-derivedartificialgraphite(M),micrometer-
scaledgraphitefibers(C),exfoliatedgraphite(GorEG),AC,
carbonblack(CB),andchemicallytreatedcarbonblack(t-CB).
ACandCBcontainnarrowergraphenesheetsoraromaticrings
asabuildingblock,whilegraphiteandgraphitefiberscontain
icrostructuresallmustbeex-
foliated(toincreaseintergraphenespacingingraphite)or
activated(toopenupnanogatesorpores,Figure1b)toallow
liquidelectrolytetoaccessmoregrapheneedgesandsurfaces
(experimentaldetailsprovidedinSupportingInformation).
Coin-sizecellswereconstructedtotestthesenanostructured
odeswerepreparedwith85%active
material,5%conductiveadditive,and10%swere
calculatedpertotalcathodematerialandpertotalcellweight
(approximatedascathodeweightÂ5).Thesampleswere
thermallyexfoliatedgraphite(CellG),graphenefromchemically
reducedgrapheneoxide(CellN),graphenefromoxidized
artificialmesophasegraphite(CellM),graphenefromoxidized
3786
/10.1021/nl2018492|NanoLett.2011,11,3785–3791
NanoLetters
Figure2.(a)AFMimageofsingle-layergrapheneoxidesheetsfromnaturalgraphite,(b)single-layergraphenesheetsstackedoverthesample-
supportingTEMmicrogrids,and(c)scanningelectronmicroscopyimageofexfoliatedgraphite.
carbonfiber(CellC),carbonblack(CellCB),oxidizedcarbon
black(t-CB),andactivatedcarbon(CellAC).Thesematerials
,>CdOandÀCOOH)that
-
phenoxidesheetsaremostlysingle-layered,basedontheresults
ofcombinedBrunauerÀEmmettÀTeller(BET)surfaceanalysis,
atomicforcemicroscopy(AFM)(Figure2a),andtransmission
electronmicroscopy(TEM)(Figure2b).Theconstituent
graphiteflakesinagraphitewormorexfoliatedgraphite
(Figure2c)remaininterconnectedasanetworkof3Delec-
tron-conductingpaths,andthemeso-andmacroscaledpores
betweenflakewallsareeasilyaccessibletoliquidelectrolyte.
TheGalvanostaticcharge/dischargecurvesandcyclicvoltam-
metry(CV)diagramsofCellsM,C,G,andNareshownin
Figure3a,b,rredoxpeakisobservedin
enotedthattheCVcurvesofboththe
conventionalpseudocapacitorsandlithium-ionbatteriestendto
exhibitastrongredoxpeakduetoslowerFaradaicredox
,
polyanilineinapseudocapacitor,lithiumtitanateinalithium-
ionbattery,andLi
x
C
6
O
6
inanorganicelectrodebattery
29
).The
lackofastrong,well-definedredoxreactionpeakintheCVsof
ourfullysurface-mediateddevicesandtheLBLCNTdeviceof
Lee,etal.
24
mightbeduetothefollowingreasons:(1)the
reactionbetweensurfacefunctionalgroupsandultrasmall
lithiumionsarerelativelyfastandoflowactivationbarrier
(Figure1b);
24,25,30À32
(2)fastadsorptionofLionabenzene
ringcenterofagraphenesheet;
33À35
(3)fasttrappingofLiions
ingraphenedefectsites;
36
and/or(4)electricdouble-layer
lelithium-capturingmechanismsofgraphene
surfacesarefurtherdiscussedinSupportingInformation.
,CellM)
withaspecificcapacityof127mAh/gatacurrentdensityof1A/g,
reachinganenergydensityof85Wh/kg
cell
(Figure3c)ata
currentdensityof0.1A/g,whichis17timeshigherthanthe
typically5Wh/kg
cell
ofcommercialAC-basedsymmetricsuper-
l-levelenergydensityandpowerdensitydata
presentedinFigure3c,dwereobtainedbydividingthecorre-
spondingvalues(basedonsingle-electrodeweight)inSupport-
ingInformationFigureS12andS13byafactorof5.
3787
/10.1021/nl2018492|NanoLett.2011,11,3785–3791
NanoLetters
Figure3.(a)Charge/dischargecurvesofthreesurface-enabledcells(M=NGPfrommesophasecarbon-derivedgraphite,C=NGPfromcarbonfibers,
G=fromexfoliatednaturalgraphite),andN=chargecurrentdensityis1A/g.(b)The
CVplotsofthesamecellsatthescanrate25mV/s,(c,d)RagoneplotsoftheseandCB,t-CB,andACcellswiththickcathodes.
Anothergraphenesurface-mediatedcell(CellN,Figure3d)
exhibitsanevenhigherenergydensityof160Wh/kg
cell
,
rgydensity
ofCell-Nmaintainsavalueover51.2Wh/kg
cell
evenata
currentdensityashighas10A/g,deliveringapowerdensityof
4.55kW/kg
cell
.ThepowerdensityofcommercialAC-based
symmetricsupercapacitorsistypicallyintherangeof1À
10kW/kg
cell
atanenergydensityof5Wh/kg
cell
,Thisimplies
that,comparedwithaconventionalsupercapacitoratthesame
powerdensity,thesurface-mediateddevicescandeliver>10
timestheenergydensity.
ThepowerdensityofCellNis25.6kW/kg
cell
at50A/gwith
anenergydensityof24Wh/kg
cell
.Thepowerdensityincreases
to93.7kW/kg
cell
at200A/gwithanenergydensityof12Wh/
kg
cell
(Figure3d).Thispowerdensityis1orderofmagnitude
higherthanthatofconventionalsupercapacitorsthatarenoted
fortheirhighpowerdensities,and2À3ordersofmagnitude
higherthanthat(typically0.1À1.0kW/kg
cell
)ofconventional
atahaveclearlydemonstratedthat
thesurface-enabledcellsareaclassofenergystoragecellsby
itself,distinctfrombothconventionalsupercapacitorsand
lithium-ionbatteries.
Figure3bcontainsacomparisonofCVdatashowingthatthe
carbonfiber-derivedgraphene(CellC)andmesophasecarbon-
derivedgraphene(M)havebetterperformancethanthermally
exfoliatedgraphite(G)in
linewiththeobservationthatCandMexhibitedsignificantly
higherÀCOOHandÀCdOcontents(Figure4b),whichare
capableofcapturingLiionsviaafastsurfaceredoxreaction.
Figure3dindicatesthattheenergydensityandpowerdensity
valuesofCBcanbesignificantlyincreasedbysubjectingCBtoa
treatmentthatinvolvesanexposuretoamixtureofsulfuricacid,
sodiumnitrate,
surfaceareawasfoundtoincreasefromapproximately122m
2
/g
toapproximately300m
2
/g,resultinginacapacityincreasefrom
8.47to46.63mAh/g).AlthoughAChasahighspecificsurface
area(1200m
2
/g),asignificantproportionoftheporesinACare
microscopicpores(<1nm)and,hence,arenotaccessibleto
,CellACdoesnotexhibithigher
powerandenergydensitiescomparedtoNGPcells.
ThecyclingperformanceforMcellisshowninFigure4aand
,NandAC)isinSupportingInformation
ementsweretakenonceevery100cycles
duringa0.1A/gchargeanddischarge,followingthesame
methodwithliterature
24
(forcomparisonpurpose).Allother
cycleswererunatanacceleratedrateof1A/1000cycles,
theretentionofcapacityremainsabove95%,whichillustratesthe
labilitycanbefurther
enotedthatmore
than30graphenesurface-enabledcellshavebeeninvestigatedfor
morethan2000cycles,andwehavefoundnoevidenceto
indicatetheinitiationofanydendrite-likestructure.
Thepresenceoffunctionalgroups,suchasÀCOOHand
>CdO,inchemicallypreparedgrapheneoxidehavebeenwell
documented.
37,38
Theformationofthesefunctionalgroupsisa
naturalresultoftheoxidizingreactionsofgraphitebysulfuric
,nitricacidandpotassium
permanganate).Bothunseparatedgraphitewormsandthe
separatedNGPshavesurface-oredge-bornefunctionalgroups.
Carbonylgroups(>CdO)inorganicandpolymericelectrodes
werefoundtobecapableofreadilyreactingwithlithiumionsto
formredoxpairs.
24,29
AccordingtoLeeetal.,
24
ÀCOOHgroups
onCNTsurfacesarecapableofreversiblyandrapidlyforminga
redoxpairwithalithiumionduringthechargeanddischarge
3788
/10.1021/nl2018492|NanoLett.2011,11,3785–3791
NanoLetters
Figure4.(a)ementsweretakenonceevery100cyclesduringa0.1A/gchargeand
ercycleswererunatanacceleratedrateof1A/ndofthetest,thecapacitywas95%entionmaybe
furtherimprovedwithoptimizationofthematerialpreparationprocedure.(b)FTIRspectraofthethreematerials,indicatingthatbothexfoliated
mesophasecarbon-andcarbon-fiber-basedelectrodes(MandC)exhibitmoreÀCOOHand>CdOgroupscomparedtotheexfoliatedgraphitesample
(G).(c)CyclicvoltammetryplotsofoxidizedMcellandapartiallyreducedMcell.(d)RagoneplotofoxidizedMcellandapartiallyreducedMcell,
indicatingsignificantlyreducedcapacity,energydensity,andpowerdensitywhenasignificantproportionofthefunctionalgroupswaseliminated.
(e)TheRagoneplotsofgraphenesurface-enabledLiion-exchangingcellswithdifferentelectrodethicknesses.
nceivablethatLiionsalsocanreactwith
the>CdOandÀCOOHgroupsonthegrapheneplanesor
edgesofseparatedgraphenesheets,theunseparatedgraphene
sheetsthatconstitutegraphiteworms,andthearomaticrings
(smallgraphenesheets)inACortreatedCB.
ThetypicalgravimetriccapacitanceofNGPelectrodesinthe
voltagerange3À4.2VversusLi(withacomparablevoltagescale
of0to∼1.2Vversusstandardhydrogenelectrode(SHE))is
150À350F/arbonyl(>CdO)groups,forinstance,can
bereducedbyLi
+
andreversiblyoxidized,capacitanceobtained
canbeattributedtotheFaradaicreactionsofoxygenonthe
grapheneedgeorsurface,illustratedasfollows
>CdO
graphene
þLi
þ
þe
À
T>CÀOLi
graphene
Onthebasisofelementalanalysis,theoxygencontentof
naturalgraphite-,artificialgraphite-,andcarbonfiber-derived
grapheneoxidesampleswere12.9,28.8,and20.8%,respectively.
TheFTIRspectraofthethreecathodematerials,shownin
Figure4b,indicatethatbothCellMandCellCexhibitmore
ÀCOOHand>
consistentwiththeobservationsthatCellsMandCexhibit
higherenergydensityandpowerdensitythanCellGprovided
thatLibondingwiththesefunctionalgroupsisaprimarylithium-
capturingmechanism.
Theroleofsurfacefunctionalgroupsinprovidinghigh
capacitancesingraphite-derivedgraphenewasfurtherillustrated
bycomparingthespecificcapacitanceofthegraphenematerial
beforeandafterexposuretoareductiontreatment(in4%H
2
and
96%N
2
at900°Cfor3h).AsshowninFigure4c,thegravimetric
currentofthegrapheneelectrodeinCellMdecreasedconsider-
ably(by65%)afterthisthermalreductiontreatmenttoreduce
acitanceofthereduced-
NGPcellis43mAh/gand50F/gatacurrentdensityof1A/g.
3789
/10.1021/nl2018492|NanoLett.2011,11,3785–3791
NanoLetters
Acomparisonoftheenergydensityandpowerdensitydatainthe
RagoneplotofFigure4dseemstosuggestthatthereductionin
oxygencontent(hence,thefunctionalgroupcontent)ledtoa
servationseemsto
beconsistentwiththeproposedlithiumstoragemechanismvia
thesurface-basedredoxreactionbetweenLiandfunctional
r,moreresearchisneededbeforeamore
definitivemechanismcanbevalidated.
ThesourceofextraLi
+
,Lipowder)implementedat
theanodeandtheLi
+
ions
+
pre-existinginliquidelectrolyte
providelargeamountsofLiionsthatcanbeshuttledbetween
twonanostructuredelectrodes,whicharefullycapableofcaptur-
themain
reasonwhythesurface-enabledcellsexhibitexceptionalenergy
densities.
Iftheseionscanmigrateatasufficientlyhighrate(short
migrationtimes),thentheultrahighpowerdensitywouldbe
brieflydiscussedbelow:Fordescribingtheion
transportinacell,theNernstÀPlanck(NP)equation(eqS4in
SupportingInformation)maybemoreaccurateascomparedto
theFick’equationprovidesthefluxofions
undertheinfluenceofbothanionicconcentrationgradientand
anelectricfiportingInformationprovidesseveral
significantobservations:
(1)Conventionallithiumionbatteriesfeaturingamicro-
meter-sizedgraphiteanodeandamicrometer-sizedLiFe-
PO
4
,7.29h)to
completetherequiredprocessesofintercalationinone
electrodeanddeintercalationintheotherelectrode
(SupportingInformationFigureS5a).Thisproblemof
alongdiffusiontimecanbepartiallyalleviatedbyusing
nanoscaledparticles.
(2)Forthefullysurface-mediatedcells,theelectrodethick-
tance,inthecaseof
usingfunctionalizedNGPastheelectrodes(Supporting
InformationFigureS8a),thetotalmigrationtimeofLi
ionsinliquidelectrolyteis1.27sifthecathodeandanode
areeach200μmthickandseparatoris100μ
migrationtimeisreducedto0.318siftheanode=
cathodethickness=100μmandseparatorthickness=
50μerimentalchargeanddischargetimedata
showninSupportingInformationFigureS9a,barecon-
llwithan
anodecenter-to-cathodecenterdistanceof250μm,an
ionmigrationtimeof0.88swasobtainedthrough
mentally,underhighcurrentdensity
conditionsthetotaldischargetimewasfoundtobe
between0.4and1.5s.
(3)Theaboveobservationsimplythatthesurface-enabled
cellsshouldhaveanextraordinarypowerdensity,parti-
er
densitiesobservedwithgraphene-enabled,fullysurface-
mediatedcells(withanelectrodethicknessof80μm,
Figure4e)arecomparableorslightlysuperiortothoseof
LBLf-CNT-basedbatteries
23
(thicknessof3μm)at
comparablecurrentdensities.
Therearegreatamountsofsuitablesitesavailableontheedges
ofagraphenesheet(inanNGP,AC,orCBnanostructure)ora
graphiteflake(inanexfoliatedgraphiteworm)toacceptfunc-
hlowercostofAC,CB,graphene,and
exfoliatedgraphite,andtheireaseofformingabulkelectrode
makethesenanocarbonsidealelectrodematerialsforthisnew
classofhigh-powerenergystoragecell.
Insummary,anewgenerationofenergystoragedeviceshas
beendevelopedwiththelithiumstoragemechanismandkinetics
ullysurface-enabled,lithiumion-exchanging
cellswiththeirmaterialsandstructuresyettobeoptimizedare
alreadycapableofstoringanenergydensityof160Wh/kg
is30timeshigherthanthatofconventionalelectric
cell
,
which
doublelayer(EDL)erdensityof
100kW/kg
cell
is10timeshigherthanthat(10kW/kg
EDLsupercapacitorsand100times
cell
)of
conventionalhigher
thanthat(1kW/kg
Figure4enicelydemonstrates
cell
)ofconventionallithium-ionbatteries.
thatthesurface-enabledcellsarea
classofenergystoragecellsbyitself,distinctfrombothsuper-
rkisneeded
tomoreclearlydifferentiatethedominantlithium-storage
mechanism(s)betweensurfaceredox,surfaceadsorption,
andsurfacedefecttrapping.
’
ASSOCIATEDCONTENT
b
SupportingInformation.
Descriptionofmaterialsand
terialisavailablefreeofchargeviatheInternet
at.
’
AUTHORINFORMATION
CorrespondingAuthor
*E-mail:(B.Z.J.)@;(A.Z.)
@.
’
ACKNOWLEDGMENT
chnologyInnovation
Program(TIP)Grant(ProgramManagers:Grinspon
u)isgratefullyacknowledged.
’
REFERENCES
mentals
(1)Conway,ochemical
1999.
andTechnologicalApplications;
Supercapacitors:
PlenumPublishers:
Scienti
New
ficFunda-
York,
(2)
(3)
Simon,
Miller,J.
P.;
R.;
Gogotsi,.2008,7,845–854.
C.
(4)
K.;Peng,
Kim,
H.;
D.K.;
Huggins,
Muralidharan,
Simon,e
R.A.;
P.;Lee,
2008
H.;
,321
Ru
,
ff
651
o,R.;
–652.
Yang,Y.;Chan,
Cui,
(5)
Y.
Hu,
PANS
L.B.;
2009
Choi,
Cui,tt.2008,8,3948–3952.
,
J.W.;Yang,Y.;Jeong,S.;Mantia,L.F.;Cui,L.F.;
Taberna,
(6)Chmiola,J.;
106
Yushin,
,21490
G.;
–21494.
Gogotsi,Y.;Portet,C.;Simon,P.;
151
(7)Hu,
P.
C.
e
C.;Chen,
2006
W.
,313
C.;
,
Chang,
1760–1763.
.
Long,
(8)
,A281–A290.
2004,
J.
Fischer,
A.
Lett.
E.;Pettigrew,K.A.;Rolison,D.R.;Stroud,R.M.;
ochem.
(9)Amatucci,G.G.;
2007
Badway,
,7,281–286.
F.;DuPasquier,A.;
Nano
(10)Reddy,
Soc.
A.
2001
L.
,148,A930–A939.
Zheng,T.
2008
(11)
Lett.
B
版权声明:本文标题:电池革命 美国nanotek公司新发明石墨烯电池-英文原文_图文 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://roclinux.cn/p/1735535171a1673970.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
更多相关文章
配置计算机更新失败还原更改,技术编辑教您怎么解决配置windowsupdate失败还原更改...
当电脑出现提示说:配置windowsupdate失败还原更改,小伙伴你们知道要怎么处理吗?要是不知道的话,那也那必要感到尴尬哦,小
基站Wi-FiGPS定位技术!学到就是赚到!
在现代社会中,定位技术已经成为我们日常生活中不可或缺的一部分。无论是导航、社交、物流,还是应急救援,定位技术都在其中扮演着重要角色。今天特别分享定位相关示例ÿ
WiFi6技术介绍
转载于:https:www.sohua332514107_100128024,感谢! 移动互联网时代,“WiFi”和“4G”一直是两个并存的名
Uber 新冠之殇:首席技术官Thuan Pham宣布离职,预计裁员5400人
新智元报道 来源:The Verge等 编辑:雅新 【新智元导读】新冠肺炎全球蔓延,美国已成为全球确诊人数最多的国家。Uber的乘车业务只减不增,预
2020年十大币预测_2020年的5种技术预测
2020年十大币预测 俗话说:“变化越多,它们保持不变的越多。”我发现这句话在技术方面尤其正确。 尽管它变得越来越复杂,但驱动技术创新的基本主题却在整个历史上一直保持不变
2018年度10大新兴技术:人工智能、量子计算、增强现实等
2018年度10大新兴技术:人工智能、量子计算、增强现实等 https:wwwblogsDicksonJYLp9684901.html 9月19日,世界经济论坛和《科学美国人》联合发布了
【2014】深度技术GHOST Win7 SP1 X64马年快速装机版
软件类型:国产 软件授权方式:共享 软件界面语言:简体中文 软件大小:3.62 GB 文件类型:.exe 软件等级
10大热点技术领域发展趋势分析
当前,在亚太乃至全球电信市场,最热门、最受大家最关注的技术和业务是什么?是3G、IMS?还是IPTV、手机电视?其未来的发展趋势如何?在光网络、网络安全、手机终端、OSS等传统领域,又有什么新的发展和机会?除此之外,无线宽带、运营级以太网等
[Web技术]用户信息管理系统
Spring-_-Bear 的 CSDN 博客导航文章目录 一、快速开始二、任务概述2.1 基本功能2.2 信息管理 三、分析设计四、功能展示4.1 用户登录4.2 用户注册4.3 重置密码4.4 主界面4.5 个人资料4.6 修改密码
2.Windows 界面技术发展现状
毫无疑问,Windows的流行推动了图形界面的发展,从最原始的Win32界面库到MFC,再到最近UWP界面库,Windows界面库的发展也代表了界面库和
Gartner发布物联网技术十大趋势,人工智能的最后一公里是边缘计算
新智元原创 编辑:三石、克雷格 【导读】边缘计算将为未来的终端提供AI能力,形成万物感知、万物互联、 万物智能的智能世界,打通AI的后期一公里。另外,
OSINT技术情报精选·2024年7月第2周
OSINT技术情报精选·2024年7月第2周 2024.7.15版权声明:本文为博主chszs的原创文章,未经博主允许不得转载。 1、艾瑞咨询:《2024年中国数据中台行
交换机和路由器技术-31-扩展ACL
扩展ACL ACL应用规则 在一个接口一个方向上只能应用一个访问控制列表 access-list 1 deny host 192.168.1.1 access-list 2 deny host 192.168.2.1 int f00 i
华为路由器之BGP路由技术总结及配置命令
一、BGP的概念 BGP(Border Gateway Protocol,边界网关协议)是一个距离矢量路由协议,和传统的基于下一跳的IGP协议不同&am
python语言磁力搜索引擎源码公开,基于DHT协议,十二分有技术含量的技术博客...
之前我在写百度网盘爬虫,百度图片爬虫的时候答应网友说,抽时间要把ok搜搜的的源码公开,如今是时候兑现诺言了,下面就是爬虫的所有代码,
解读软件架构的复杂性:业务和技术的双重挑战
目录 一、综述分析 二、业务复杂性分析 (一)领域建模 (二)领域分层 (三)服务粒度 &
WLAN与TCP的单播、组播及广播技术详解
1. 引言 在网络通信中, 单播(Unicast)、 组播(Multicast) 和 广播(Broadcas
GPT 系列模型发展史:从 GPT 到 ChatGPT 的演进与技术细节
从 GPT 到 ChatGPT,OpenAI 用短短几年时间,彻底改变了自然语言处理(NLP)的格局。让我们一起回顾这段激动人心的技术演进史&#
发表评论