admin 管理员组文章数量: 1086019
2024年12月29日发(作者:指针在内存中占几个字节)
Package‘hdImpute’
August7,2023
TypePackage
TitleABatchProcessforHighDimensionalImputation
Version0.2.1
BugReports/pdwaggoner/hdImpute/issues
MaintainerPhilipWaggoner<*************************>
DescriptionAcorrelation-basedbatchprocessforfast,accurateimputationfor
highdimensionalmissingdataproblemsviachainedrandomforests.
SeeWaggoner(2023)
StekhovenandBühlmann(2012)
andMayer(2022)formoreon'missRanger'.
LicenseMIT+fileLICENSE
EncodingUTF-8
ImportsmissRanger,plyr,purrr,magrittr,tibble,dplyr,tidyselect,
tidyr,cli
Suggeststestthat(>=3.0.0),knitr,rmarkdown,usethis,missForest,
tidyverse
VignetteBuilderknitr
RoxygenNote7.2.3
Config/testthat/edition3
URL/pdwaggoner/hdImpute
NeedsCompilationno
AuthorPhilipWaggoner[aut,cre]
RepositoryCRAN
Date/Publication2023-08-0721:20:02UTC
Rtopicsdocumented:
check_
check_
1
2
2
2
feature_cor..
flatten_mat..
impute_batches
Index
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
check_row_na
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
4
4
5
6
8
check_feature_naFindfeatureswith(specifiedamountof)missingness
Description
Findfeatureswith(specifiedamountof)missingness
Usage
check_feature_na(data,threshold)
Arguments
data
threshold
Adataframeortibble.
Missingnessthresholdinagivencolumn/featureasaproportionboundedbe-
tsettosensitivelevelat1e-04.
Value
Avectorofcolumn/featurenamesthatcontainmissingnessgreaterthanthreshold.
Examples
##Notrun:
check_feature_na(data=any_data_frame,threshold=1e-04)
##End(Notrun)
check_row_naFindnumberofandwhichrowscontainanymissingness
Description
Findnumberofandwhichrowscontainanymissingness
Usage
check_row_na(data,which)
feature_cor
Arguments
data
which
Adataframeortibble.
3
alistbereturnedwiththerownumberscorrespondingtoeach
rowwithmissingness?DefaultsettoFALSE.
Value
Eitheranintegervaluecorrespondingtothenumberofrowsindatawithanymissingness(ifwhich
=FALSE),oratibblecontaining:1)numberofrowsindatawithanymissingness,and2)alistof
whichrows/rownumberscontainmissingness(ifwhich=TRUE).
Examples
##Notrun:
check_row_na(data=any_data_frame,which=FALSE)
##End(Notrun)
feature_corHighdimensionalimputationviabatchprocessedchainedrandom
forestsBuildcorrelationmatrix
Description
HighdimensionalimputationviabatchprocessedchainedrandomforestsBuildcorrelationmatrix
Usage
feature_cor(data,return_cor)
Arguments
data
return_cor
Value
Across-featurecorrelationmatrix
References
Waggoner,P.D.(2023).ationalStatistics,
:<10.1007/s00180-023-01325-9>
vanBuurenS,Groothuis-OudshoornK(2011)."mice:MultivariateImputationbyChainedEqua-
tionsinR."JournalofStatisticalSoftware,45(3),:<10.18637/jss.v045.i03>
Adataframeortibble.
thecorrelationmatrixbeprinted?DefaultsettoFALSE.
4
Examples
##Notrun:
feature_cor(data=data,return_cor=FALSE)
##End(Notrun)
hdImpute
flatten_matFlattenandarrangecormatrixtobedf
Description
Flattenandarrangecormatrixtobedf
Usage
flatten_mat(cor_mat,return_mat)
Arguments
cor_mat
return_mat
Value
Avectorofcorrelation-basedrankedfeatures
Examples
##Notrun:
flatten_mat(cor_mat=cor_mat,return_mat=FALSE)
##End(Notrun)
Acorrelationmatrixoutputfromrunningfeature_cor()
theflattenedmatrixbeprinted?DefaultsettoFALSE.
hdImputeCompletehdImputeprocess:correlationmatrix,flatten,rank,create
batches,impute,join
Description
CompletehdImputeprocess:correlationmatrix,flatten,rank,createbatches,impute,join
Usage
hdImpute(data,batch,pmm_k,n_trees,seed,save)
impute_batches
Arguments
data
batch
pmm_k
n_trees
seed
save
Originaldataframeortibble(withmissingvalues)
ize.
tsetat5.
tsetat15.
besetforreproducibility.
5
filetoworking
directory?DefaultsettoFALSE.
Details
atabydividingtherow_number()bybatchsize(batch,numberofbatchessetby
user)roughgroup_split()
tecompleted(unlisted/joined)imputeddataframe
Value
Acompleted,imputeddataset
References
Waggoner,P.D.(2023).ationalStatistics,
:<10.1007/s00180-023-01325-9>
Stekhoven,D.J.,&Bühlmann,P.(2012).MissForest—non-parametricmissingvalueimputation
ormatics,28(1),:<10.1093/bioinformatics/btr597>
Examples
##Notrun:
impute_batches(data=data,
batch=2,pmm_k=5,n_trees=15,
seed=123,save=FALSE)
##End(Notrun)
impute_batchesImputebatchesandreturncompleteddataframe
Description
Imputebatchesandreturncompleteddataframe
Usage
impute_batches(data,features,batch,pmm_k,n_trees,seed,save)
6
Arguments
data
features
batch
pmm_k
n_trees
seed
save
Originaldataframeortibble(withmissingvalues)
mad
Correlation-basedvectorofrankedfeaturesoutputfromrunningflatten_mat()
ize.
tat5.
tat15.
besetforreproducibility.
filetoworking
directory?DefaultsettoFALSE.
Details
atabydividingtherow_number()bybatchsize(batch,numberofbatchessetby
user)roughgroup_split()
tecompleted(unlisted/joined)imputeddataframe
Value
Acompleted,imputeddataset
References
Waggoner,P.D.(2023).ationalStatistics,
:<10.1007/s00180-023-01325-9>
Stekhoven,D.J.,&Bühlmann,P.(2012).MissForest—non-parametricmissingvalueimputation
ormatics,28(1),:<10.1093/bioinformatics/btr597>
Examples
##Notrun:
impute_batches(data=data,features=flat_mat,
batch=2,pmm_k=5,n_trees=15,seed=123,
save=FALSE)
##End(Notrun)
madComputevariable-wisemeanabsolutedifferences(MAD)between
originalandimputeddataframes.
Description
Computevariable-wisemeanabsolutedifferences(MAD)betweenoriginalandimputeddataframes.
mad
Usage
mad(original,imputed,round)
Arguments
original
imputed
round
Value
Adataframeortibblewithoriginalvalues.
Adataframeortibblethathasbeenimputed/completed.
tsetto3.
7
‘mad_scores‘as‘p‘foreachvariableinoriginal,from1to‘p‘.Twocolumns:
firstisvariablenames(‘var‘)andsecondisassociatedMADscore(‘mad‘)aspercentagesforeach
variable.
Examples
##Notrun:
mad(original=original_data,imputed=imputed_data,round=3)
##End(Notrun)
Index
check_feature_na,2
check_row_na,2
feature_cor,3
flatten_mat,4
hdImpute,4
impute_batches,5
mad,6
8
版权声明:本文标题:高维缺失数据处理包hdImpute的说明说明书 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://roclinux.cn/p/1735527837a1673912.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论