admin 管理员组

文章数量: 1087139


2024年4月16日发(作者:源码搭建详细教程)

NUAA

第1页 (共6页)

Matrix Theory, Final, Test Date: 2015年12月28日

矩阵论班号: 学号 姓名

必做题(70分)

题号

得分

1

2

3

4

5

选做题(30分)

总分

Part I (必做题,共5题,70分)

第1题(15分)

得分

Let

P

[1,1]

denote the set of all real polynomials of degree less than 3 with domain

(定义域)

[1,1]

. The addition and scalar multiplication are defined in the usual way.

Define an inner product on

P

[1,1]

by

p,q

p(t)q(t)dt

.

1

1

(1) Construct an orthonormal basis for

P

[1,1]

from the basis

1,x,x

2

by using the

Gram-Schmidt orthogonalization process.

(2) Let

f(x)x

2

1

P

[1,1]

. Find the projection of

f

onto the subspace spanned by{

1,x

}.

Solution:

(1)

11,1

p

1

x,

1

2

1

1

1

dx2

,

u

1

1

2

,

1

2

1

[

1

1

2

1

xdx]

1

2

0

,

u

2

xp

1

xp

1

3

x

,

2

x

2

p

2

10

331

(3x

2

1)

p

2

x,x,xx

,

u

3

2

4

223

xp

2

22

22

------------------------------------------------------------------------------------

-------

(2)

projx

2

1,u

1

u

1

x

2

1,u

2

u

2

x

2

1,



1

2

1

2

x

2

1,

33

xx

22

2212

0

33

2

------------------------------------------------------------------------------------

----------------------------

精品文档

第2题(15分) 得分

Let

be the linear transformation on

P

3

(the vector space of real polynomials of

degree less than 3) defined by

(p(x))xp'(x)p''(x)

.

(1) Find the matrix

A

representing

with respect to the ordered basis [

1,x,x

2

] for

P

3

.

(2) Find a basis for

P

3

such that with respect to this basis, the matrix

B

representing

is diagonal.

(3) Find the kernel(核) and range (值域)of this transformation.

Solution:

(1)

()10

002

010

A

(x)x



002

(x

2

)22x

2



------------------------------------------------------------------------------------

-----------------------------

(2)

101



T

010

(The column vectors of T are the eigenvectors of A)

001



The corresponding eigenvectors in

P

3

are

000

010

T

1

AT



(

T

diagonalizes

A

)

002



2

[1,x,x

2

1][1,x,x

2

]T

. With respect to this new basis

[1,x,x1]

, the representing

matrix of is diagonal.

---------------------------------------------------------------------------------

---------------------------------- (3) The kernel is the subspace consisting of

all constant polynomials.

The range is the subspace spanned by the vectors

x,x

2

1

------------------------------------------------------------------------------------

-----------------------------------

2

欢迎下载

精品文档

第3题(20分) 得分

110

Let

A

020

.

012



(1) Find all determinant divisors and elementary divisors of

A

.

(2) Find a Jordan canonical form of

A

.

(3) Compute

e

At

. (Give the details of your computations.)

Solution:

(1)

10



1

IA

20

,(特征多项式

p(

)(

1)(

2)

2

. Eigenvalues are 1, 2,

0

01

2



2.)

Determinant divisor of order

D

1

(

)1

,

D

2

(

)1

,

D

3

(

)p(

)(

1)(

2)

2

Elementary divisors are

(

1) and (

2)

2

.

------------------------------------------------------------------------------------

----------------------------------

(2) The Jordan canonical form is

100



J

021

002



------------------------------------------------------------------------------------

--------------------------------------

0

(3) For eigenvalue 1,

IA

0

0

1

For eigenvalue 2,

2IA

0

0

1

1

1

0

0

, An eigenvector is

p

1

(1,0,0)

T

1

0

0

, An eigenvector is

p

2

(0,0,1)

T

0

3

欢迎下载

1

0

1


本文标签: 源码 搭建 论班号 精品 欢迎