admin 管理员组文章数量: 1086019
2024年6月18日发(作者:pg和mysql)
Release 10.0 Documentation for ANSYS
SHELL63
Elastic Shell
弹性壳单元
SHELL63 Element Description
SHELL63单元描述
SHELL63 has both bending and membrane capabilities. Both in-plane and normal
loads are permitted. The element has six degrees of freedom at each node: translations
in the nodal x, y, and z directions and rotations about the nodal x, y, and z-axes. Stress
stiffening and large deflection capabilities are included. A consistent tangent stiffness
matrix option is available for use in large deflection (finite rotation) analyses. See
SHELL63 in the ANSYS, Inc. Theory Reference for more details about this element.
Similar elements are SHELL43 and SHELL181 (plastic capability), and SHELL93
(midside node capability). The ETCHG command converts SHELL57 and
SHELL157 elements to SHELL63.
SHELL63既具有弯曲能力又具有膜力,可以承受平面内荷载和法向荷载。本单元每个节点
具有6个自由度:沿节点坐标系X、Y、Z方向的平动和沿节点坐标系X、Y、Z轴的转动。
应力刚化和大变形能力已经考虑在其中。在大变形分析(有限转动)中可以采用不变的切向
刚度矩阵。其详细的特性请参考Section 14.63 of the ANSYS Theory Reference
。
近似的单元
有SHELL43,SHELL181(塑性能力),SHELL93(包含中间节点)ETCHG命令可以将
SHELL57和SHELL157单元转换为SHELL63单元。
Figure 63.1 SHELL63 Geometry
Figure 63.1 shell63几何描述
x
IJ
= Element x-axis if ESYS is not supplied.
如果无ESYS则x
IJ
为单元X轴
x = Element x-axis if ESYS is supplied.
如果有ESYS则为单元X轴
SHELL63 Input Data
SHELL63输入数据
The geometry, node locations, and the coordinate system for this element are shown
in Figure 63.1: "SHELL63 Geometry". The element is defined by four nodes, four
thicknesses, an elastic foundation stiffness, and the orthotropic material properties.
Orthotropic material directions correspond to the element coordinate directions. The
element coordinate system orientation is as described in Coordinate Systems. The
element x-axis may be rotated by an angle THETA (in degrees).
单元SHELL63的几何形状、节点位置及坐标系如图63.1所示,单元定义需要四个节点、四
个厚度、一个弹性地基刚度和正交各向异性的材料。正交各向异性的材料参数的方向依据单
元坐标系,单元坐标系方向见Coordinate Systems章节。单元的X轴可以转动一个角度
THETA(度数)。
The thickness is assumed to vary smoothly over the area of the element, with the
thickness input at the four nodes. If the element has a constant thickness, only TK(I)
need be input. If the thickness is not constant, all four thicknesses must be input.
在单元的面内,其节点厚度为输入的四个厚度,单元的厚度假定为均匀变化。如果单元厚度
不变,只需输入TK(I)即可;如果厚度是变化的,则四个节点的厚度均需输入。
The elastic foundation stiffness (EFS) is defined as the pressure required to produce a
unit normal deflection of the foundation. The elastic foundation capability is bypassed
if EFS is less than, or equal to, zero.
弹性地基刚度(EFS)定义:在地基法线方向产生一个单位位移所需要的压力。如果EFS小于
或者等于0,则弹性地基的效应将被忽略。
For certain nonhomogeneous or sandwich shell applications, the following real
constants are provided: RMI is the ratio of the bending moment of inertia to be used
to that calculated from the input thicknesses. RMI defaults to 1.0. CTOP and CBOT
are the distances from the middle surface to the extreme fibers to be used for stress
evaluations. Both CTOP and CBOT are positive, assuming that the middle surface is
between the fibers used for stress evaluation. If not input, stresses are based on the
input thicknesses. ADMSUA is the added mass per unit area.
对于一些非均匀或者夹心壳的情况,本单元提供了以下实常数:RMI是由壳体本身的抗弯
刚度与按照输入厚度计算得出的抗弯刚度的比值,RMI默认为1.0。CTOP和 CBOT是从中
面到上下两面纤维的距离以用来计算应力。CTOP和 CBOT均为正数,假定中面位于用来
计算应力的上下两面纤维的中间,如果没有输入CTOP和 CBOT,应力根据输入的厚度进
行计算。ADMSUA为单位面积上的附加质量。
Element loads are described in Node and Element Loads. Pressures may be input as
surface loads on the element faces as shown by the circled numbers on Figure 63.1:
"SHELL63 Geometry". Positive pressures act into the element. Edge pressures are
input as force per unit length. The lateral pressure loading may be an equivalent
(lumped) element load applied at the nodes (KEYOPT(6) = 0) or distributed over the
face of the element (KEYOPT(6) = 2). The equivalent element load produces more
accurate stress results with flat elements representing a curved surface or elements
supported on an elastic foundation since certain fictitious bending stresses are
eliminated.
单元的荷载描述见Node and Element Loads(节点荷载和单元荷载)。压力可以作为表面荷
载,按照图SHELL63.1上显示的圆圈内数字表示的单元表面输入。压向单元的荷载为正荷
载。边界压力输入值为单位长度上的力。侧向荷载可能是一个作用在节点上的等效(集中)
单元荷载(KEYOPT(6) = 0),或者是在分配在单元面上(KEYOPT(6) = 2)。在以平面单元代替
曲面的情况或者单元支撑在弹性地基上时,因为消去了一些假定的弯曲应力,等效单元荷载
可以得到更为精确的应力结果。
Temperatures may be input as element body loads at the "corner" locations (1-8)
shown in Figure 63.1: "SHELL63 Geometry". The first corner temperature T1
defaults to TUNIF. If all other temperatures are unspecified, they default to T1. If
only T1 and T2 are input, T1 is used for T1, T2, T3, and T4, while T2 (as input) is
used for T5, T6, T7, and T8. For any other input pattern, unspecified temperatures
default to TUNIF.
温度可以作为单元的体积力作用在图SHELL63.1上的(1~8)角点,第一个角点温度T1
默认为TUNIF,如果其他角点的温度没有指定,则默认为T1,如果只有指定T1和T2,T1
代表T1, T2, T3, T4; T2 代表T5, T6, T7, T8,如有其他输入格式,未指定的温度均默认为
TUNIF。
KEYOPT(1) is available for neglecting the membrane stiffness or the bending
stiffness, if desired. A reduced out-of-plane mass matrix is also used when the
bending stiffness is neglected.
如果需要的话,KEYOPT(1)可以用于忽略抗弯刚度或者忽略膜力刚度的情况。忽略弯曲刚
度时将运用减缩的出平面质量矩阵。
KEYOPT(2) is used to activate the consistent tangent stiffness matrix (that is, a
matrix composed of the main tangent stiffness matrix plus the consistent stress
stiffness matrix) in large deflection analyses [NLGEOM,ON]. You can often obtain
more rapid convergence in a geometrically nonlinear analysis, such as a nonlinear
buckling or postbuckling analysis, by activating this option. However, you should not
use this option if you are using the element to simulate a rigid link or a group of
coupled nodes. The resulting abrupt changes in stiffness within the structure make the
consistent tangent stiffness matrix unsuitable for such applications.
KEYOPT(2)用来在大变形分析中激活调和切线刚度矩阵(即:一个矩阵由主切线刚度矩阵
加上调和切线刚度矩阵而得)。在几何非线性分析如非线性屈曲或者后屈曲分析中,打开这
个选项可以更快得到收敛。不过,在模拟刚性杆或耦合节点时,不应该激活本单元的这个选
项,结构内刚度突然的变化使得调和切线刚度矩阵不适合这种情况。(KEYOPT(2)只能为0)
KEYOPT(3) allows you to include (KEYOPT(3) = 0 or 2) or suppress (KEYOPT(3)
= 1) extra displacement shapes. It also allows you to choose the type of in-plane
rotational stiffness used:
KEYOPT(3)允许你考虑(KEYOPT(3) = 0 or 2)或者抑制(KEYOPT(3) = 1)额外的位移形状。它
还允许你选择平面内转动刚度的类型:
•
•
•
KEYOPT(3) = 0 or 1 activates a spring-type in-plane rotational stiffness about
the element z-axis
KEYOPT(3) = 0 或1激活弹簧性质的单元 Z轴平面内转动刚度
KEYOPT(3) = 2 activates a more realistic in-plane rotational stiffness
(Allman rotational stiffness - the program uses default penalty parameter
values of d
1
= 1.0E-6 and d
2
= 1.0E-3).
KEYOPT(3) = 2 激活更实际的平面内转动刚度(Allman转动刚度――程序使用默认
的罚常数值为d1 = 1.0E-6 、 d2 = 1.0E-3)
•
Using the Allman stiffness will often enhance convergence behavior in large
deflection (finite rotation) analyses of planar shell structures (that is, flat shells or flat
regions of shells).
使用Allman刚度经常能加强在平面壳结构(即:平面壳或者壳里的平面部分)的大变形(有
限转动)分析中的收敛能力
KEYOPT(7) allows a reduced mass matrix formulation (rotational degrees of freedom
terms deleted). This option is useful for improved bending stresses in thin members
under mass loading.
KEYOPT(7)允许使用减缩质量矩阵(转动自由度被删除)。这个选项在质量荷载作用下的
薄壳中对改善弯曲应力很有用处。
KEYOPT(8) allows a reduced stress stiffness matrix (rotational degrees of freedom
deleted). This option can be useful for calculating improved mode shapes and a more
accurate load factor in linear buckling analyses of certain curved shell structures.
KEYOPT(8)允许使用减缩应力矩阵(转动自由度被删除)。这个选项在一些曲线壳结构的
线形屈曲分析中对改善模态形状合更精确的荷载倍数很有用处。
KEYOPT(11) = 2 is used to store midsurface results in the results file for single or
multi-layer shell elements. If you use SHELL,MID, you will see these calculated
values, rather than the average of the TOP and BOTTOM results. You should use this
option to access these correct midsurface results (membrane results) for those
analyses where averaging TOP and BOTTOM results is inappropriate; examples
include midsurface stresses and strains with nonlinear material behavior, and
midsurface results after mode combinations that involve squaring operations such as
in spectrum analyses.
KEYOPT(11) 是用来为单层或多层壳单元存储中面结果的结果文件。
如果你使用
SHELL,MID命令,你会看到这些计算值,而不是顶部和底部的平均结果。你可以使用这个
选项来访问这些正确的中面结果(膜结果)因为分析平均顶部和底部的结果是不恰当的。例
子包括中面材料非线性行为的应力应变以及涉及平方运算如频谱分析的模式组合后的中面
结果。
A summary of the element input is given in "SHELL63 Input Summary". A general
description of element input is given in Element Input.
单元输入摘要见下面的Input Summary(输入摘要),单元输入的一般性描述见Element Input
(单元输入)。
SHELL63 Input Summary
SHELL63输入摘要
Nodes 节点
I, J, K, L
Degrees of Freedom 自由度
UX, UY, UZ, ROTX, ROTY, ROTZ
Real Constants 实常数
TK(I), TK(J), TK(K), TK(L), EFS, THETA,
RMI, CTOP, CBOT, (Blank), (Blank), (Blank),
(Blank), (Blank), (Blank), (Blank), (Blank), (Blank),
ADMSUA
See Table 63.1: "SHELL63 Real Constants" for a description of the real
constants
Material Properties 材料属性
EX, EY, EZ, (PRXY, PRYZ, PRXZ or NUXY, NUYZ, NUXZ), ALPX,
ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS,
GXY, DAMP
Surface Loads 面荷载
Pressures -- 压力
face 1 (I-J-K-L) (bottom, in +Z direction), face 2 (I-J-K-L) (top, in -Z
direction),
face 3 (J-I), face 4 (K-J), face 5 (L-K), face 6 (I-L)
Body Loads 体荷载
Temperatures -- 温度
T1, T2, T3, T4, T5, T6, T7, T8
Special Features 特殊特性
Stress stiffening应力刚化
Large deflection大变形
Birth and death单元生死
KEYOPT(1)
Element stiffness:单元刚度
0 --
Bending and membrane stiffness
弯曲刚度和膜力
1 --
Membrane stiffness only
仅考虑膜力刚度
2 --
Bending stiffness only
仅考虑弯曲刚度
KEYOPT(2) (只能为0)
Stress stiffening option:应力刚化选项
0 --
Use only the main tangent stiffness matrix when NLGEOM is ON. (Stress
stiffening effects used in linear buckling or other linear prestressed analyses
must be activated separately with PSTRES,ON.)
在NLGEOM 设为 ON时仅考虑主切线刚度矩阵(在线形屈曲或其他线形预应力分
析中考虑应力刚化效应必须另外激活PSTRES,ON.)(只能选0,见最后)
1 --
Use the consistent tangent stiffness matrix (that is, a matrix composed of the
main tangent stiffness matrix plus the consistent stress stiffness matrix) when
NLGEOM is ON and when KEYOPT(1) = 0. (SSTIF,ON will be ignored for
this element when KEYOPT(2) = 1 is activated.) Note that if
SOLCONTROL is ON and NLGEOM is ON, KEYOPT(2) is automatically
set to 1; that is, the consistent tangent will be used.
在(NLGEOM is ON 和 KEYOPT(1) = 0)时激活调和切线刚度矩阵(即:一个矩
阵由主切线刚度矩阵加上调和切线刚度矩阵而得)。当激活KEYOPT(2) = 1时
SSTIF,ON将被忽略。注意,当SOLCONTROL 设为 ON且 NLGEOM设为 ON
时KEYOPT(2)自动设为1,即自动激活调和切线刚度。
2 --
Use to turn off consistent tangent stiffness matrix (i.e., a matrix composed of
the main tangent stiffness matrix plus the consistent stress stiffness matrix)
when SOLCONTROL is ON. Sometimes it is necessary to turn off the
consistent tangent stiffness matrix if the element is used to simulate rigid
bodies by using a very large real constant number . KEYOPT(2) = 2 is the
same as KEYOPT(2) = 0, however, KEYOPT(2) = 0 is controlled by
SOLCONTROL, ON or OFF, while KEYOPT(2) = 2 is independent of
SOLCONTROL.
当SOLCONTROL 设为 ON,用于关闭调和刚度矩阵(即:一个矩阵由主切线刚
度矩阵加上调和切线刚度矩阵)。当单元用于模拟具有很大实常数的刚体时,关闭
调和刚度矩阵是有必要的。KEYOPT(2)=2同KEYOPT(2)=0,然而KEYOPT(2)=0
由SOLCONTROL设为ON或者OFF决定,而KEYOPT(2)=2和SOLCONTROL
命令之间是相互独立的。
KEYOPT(3)
Extra displacement shapes:特别位移形状
0 --
Include extra displacement shapes, and use spring-type in-plane rotational
stiffness about the element z-axis (the program automatically adds a small
stiffness to prevent numerical instability for non-warped elements if
KEYOPT(1) = 0).
考虑特别的位移形状,使用弹簧性质的单元Z轴平面内转动刚度(如果KEYOPT(1)
= 0,对非翘曲单元,程序自动加上一个小刚度以免数值不稳定)
Note
For models with large rotation about the in-plane direction,
KEYOPT(3) = 0 results in some transfer of moment directly to ground.
模型平面内有大旋转,
KEYOPT(3) = 0会导致一些弯矩传递直接接地。
1 --
Suppress extra displacement shapes, and use spring-type in-plane rotational
stiffness about the element z-axis (the program automatically adds a small
stiffness to prevent numerical instability for non-warped elements if
KEYOPT(1) = 0).
抑制特别的位移形状,使用弹簧性质的单元Z轴平面内转动刚度(如果KEYOPT(1) =
0,对非翘曲单元,程序自动加上一个小刚度以免数值不稳定)
2 --
Include extra displacement shapes, and use the Allman in-plane rotational
stiffness about the element z-axis). See the ANSYS, Inc. Theory Reference.
考虑特别的位移形状,使用单元Z轴Allman平面内转动刚度,详见14.43.6 of the
ANSYS Theory Reference
.
KEYOPT(5)
Extra stress output:特别应力输出
0 --
Basic element printout基本单元输出
2 --
Nodal stress printout节点应力输出
KEYOPT(6)
Pressure loading:压力荷载
0 --
Reduced pressure loading (must be used if KEYOPT(1) = 1)
减缩压力荷载(如果KEYOPT(1) = 1,则必须打开)
2 --
Consistent pressure loading
协调压力荷载
KEYOPT(7)
Mass matrix:质量矩阵
0 --
Consistent mass matrix
协调质量矩阵
1 --
Reduced mass matrix
减缩质量矩阵
KEYOPT(8)
Stress stiffness matrix:应力刚化矩阵
0 --
“Nearly” consistent stress stiffness matrix (default)
“近似”协调应力刚度矩阵(默认)
1 --
Reduced stress stiffness matrix
减缩应力刚度矩阵
KEYOPT(9) (只能为0,见最后)
Element coordinate system defined:定义单元坐标系
0 --
No user subroutine to define element coordinate system
无用户子程序定义单元坐标系
4 --
Element x-axis located by user subroutine USERAN
用USERAN定义单元坐标系
Note
See the Guide to ANSYS User Programmable Features for user written
subroutines
(用户子程序详见 ANSYS Guide to User Programmable Features)
KEYOPT(11)
Specify data storage:
指定数据存储:
0 --
Store data for TOP and BOTTOM surfaces only
仅存储顶面和底面的数据
2 --
Store data for TOP, BOTTOM, and MID surfaces
存储顶面、底面和中面的数据
Table 63.1 SHELL63 Real Constants实常数
No.
1
2
3
4
5
6
7
8
9
19
Name
TK(I)
TK(J)
TK(K)
TK(L)
EFS
THETA
RMI
CTOP
CBOT
Description
Shell thickness at node I
节点I壳厚度
Shell thickness at node J
节点J壳厚度
Shell thickness at node K
节点K壳厚度
Shell thickness at node L
节点L壳厚度
Elastic foundation stiffness
弹性基础刚度
Element X-axis rotation
单元X轴旋转角
Bending moment of inertia ratio
弯曲惯量比
Distance from mid surface to top
中面到顶面的距离
Distance from mid surface to bottom
中面到底面的距离
- - 10, ..., 18 (Blank)
ADMSUA
Added mass/unit area
附加质量/单位面积
SHELL63 Output Data
SHELL63输出数据
The solution output associated with the element is in two forms:
与单元有关的结果输出有两种形式:
Nodal displacements included in the overall nodal solution
•
包括在整个节点解中的节点自由度。
•
Additional element output as shown in Table 63.2: "SHELL63 Element
Output Definitions"
•
附加的单元输出,见单元输出定义。
•
Several items are illustrated in Figure 63.2: "SHELL63 Stress Output". Printout
includes the moments about the x face (MX), the moments about the y face (MY), and
the twisting moment (MXY). The moments are calculated per unit length in the
element coordinate system. The element stress directions are parallel to the element
coordinate system. A general description of solution output is given in Solution
Output. See the ANSYS Basic Analysis Guide for ways to view results.
在图中显示了几个应力输出项。输出包括X面(MX)的弯矩、Y面(MY)的弯矩、和扭矩(MXY)。
弯矩为单元坐标系内单位长度上计算所得。单元应力方向和单元坐标系统平行。对各种结果
输出的描述见结果输出Solution Output。描述结果的方法参见ANSYS Basic Analysis Guide
Figure 63.2 SHELL63 Stress Output
Figure 63.2 SHELL63 应力输出
x
IJ
= Element x-axis if ESYS is not supplied.
x = Element x-axis if ESYS is supplied.
The Element Output Definitions table uses the following notation:
单元输出定义表使用如下标记:
A colon (:) in the Name column indicates the item can be accessed by the Component
Name method [ETABLE, ESOL]. The O column indicates the availability of the
items in the file . The R column indicates the availability of the items in
the results file.
name 列表示该项目可以通过构成名字的方法来获得[ETABLE, ESOL]。第O 列表示该项有
效的说明在文件 中。R 列表示该项的结果显示在results 文件中。
In either the O or R columns, Y indicates that the item is always available, a number
refers to a table footnote that describes when the item is conditionally available, and a
- indicates that the item is not available.
无论在0 还是R 列中,Y 表示该项一直是可用的。数值表示描述哪里该项是选择性提供的
脚注,-表示该项不提供。
Table 63.2 SHELL63 Element Output Definitions单元输出定义
Name
EL
NODES
MAT
AREA
XC, YC, ZC
PRES
Definition
Element Number
单元号
Nodes - I, J, K, L
节点 - I, J, K, L
Material number
材料号
AREA
面积
Location where results are reported
结果输出点位置
O R
Y Y
Y Y
Y Y
Y Y
Y 1
Pressures P1 at nodes I, J, K, L; P2 at I, J, K, L; P3 at J, Y Y
I; P4 at K, J; P5 at L, K; P6 at I, L
P1
在节点 I, J, K, L; P2 在 I, J, K, L; P3 在 J, I; P4在K, J; P5
在 L, K; P6 在 I, L
TEMP
T(X, Y, XY)
M(X, Y, XY)
Temperatures T1, T2, T3, T4, T5, T6, T7, T8
温度 T1, T2, T3, T4, T5, T6, T7, T8
Y Y
Y Y
Y Y
Y -
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
In-plane element X, Y, and XY forces
平面内单元 X, Y, 和 XY 集中力
Element X, Y, and XY moments
单元X, Y, 和 XY 弯矩
Foundation pressure (if nonzero)
地基压力 (如果非0)
LOC
S:X, Y, Z, XY
S:1, 2, 3
S:INT
S:EQV
EPEL:X, Y, Z,
XY
Top, middle, or bottom
上表面, 中面, or 下表面
Combined membrane and bending stresses
合成的弯曲和模的应力
Principal stress
主应力
Stress intensity
应力强度
Equivalent stress
等效应力
Average elastic strain
平均弹性应变
Name
EPEL:EQV
EPTH:X, Y, Z,
XY
EPTH:EQV
Definition
Equivalent elastic strain [2]
等效弹性应变
Average thermal strain
平均热应变
Equivalent thermal strain [2]
等效热应变
O R
- Y
Y Y
- Y
1. Available only at centroid as a *GET item.
只有在质心作为*GET项时可用
2.
The equivalent strains use an effective Poisson's ratio: for elastic and thermal
this value is set by the user (MP,PRXY).
等效应变应设定柏松比:对于弹性和热
柏松比用MP,PRXY命令输入。
Table 63.3 SHELL63 Miscellaneous Element Output混合单元输出项
Description
Nodal Stress Solution
Names of Items Output
TEMP, S(X, Y, Z, XY), SINT, SEQV
O R
1-
1. Output at each node, if KEYOPT(5) = 2, repeats each location
如果KEYOPT(5)=2,则输出每个节点的值
Table 63.4: "SHELL63 Item and Sequence Numbers" lists output available through
the ETABLE command using the Sequence Number method. See The General
Postprocessor (POST1) in the ANSYS Basic Analysis Guide and The Item and
Sequence Number Table in this manual for more information. The following notation
is used in Table 63.4: "SHELL63 Item and Sequence Numbers":
“SHELL63项目和序号表”中列出了在后处理中可通过ETABLE命令加参数及数字序
号的方法定义可列表察看的有关变量的细则。详细参见《ANSYS基本分析指南》中有关“The
General Postprocessor (POST1)”和“The Item and Sequence Number Table”部分。下面是表
格的一些使用说明:
Name
output quantity as defined in the Table 63.2: "SHELL63 Element Output
Definitions"
指在“SHELL63单元输出数据说明表”中的有关变量。
Item
predetermined Item label for ETABLE command
命令ETABLE中使用的参数。
E
sequence number for single-valued or constant element data
对于单值或常数型单元数据的序列号;
I,J,K,L
sequence number for data at nodes I,J,K,L
节点I,J,K,L处数据的序列号。
Table 63.4 SHELL63 Item and Sequence Numbers输出项和序列号
Output Quantity Name
TX
TY
TXY
MX
MY
MXY
P1
P2
P3
P4
P5
P6
Top
S:1
S:2
S:3
S:INT
S:EQV
Bot
S:1
S:2
S:3
S:INT
S:EQV
NMISC
NMISC
NMISC
NMISC
NMISC
- 21
- 22
- 23
- 24
- 25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
NMISC
NMISC
NMISC
NMISC
NMISC
- 1
- 2
- 3
- 4
- 5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
ETABLE and ESOL Command Input
Item
SMISC
SMISC
SMISC
SMISC
SMISC
SMISC
SMISC
SMISC
SMISC
SMISC
SMISC
SMISC
E
1
2
3
4
5
6
- 9
- 13
- 18
-
-
-
-
I
-
-
-
-
-
-
J
-
-
-
-
-
-
10
14
17
20
-
-
K
-
-
-
-
-
-
11
15
-
19
22
-
L
-
-
-
-
-
-
12
16
-
-
21
24 - 23
SHELL63 Assumptions and Restrictions
SHELL63单元假设及使用限制
•
•
•
•
•
•
•
Zero area elements are not allowed. This occurs most often whenever the
elements are not numbered properly.
单元不能面积为0。这种情况经常出现在单元被非正常计数时。
Zero thickness elements or elements tapering down to a zero thickness at any
corner are not allowed.
0厚度单元或者在任何角点逐渐变细到0厚度也不被允许。
The applied transverse thermal gradient is assumed to vary linearly through
the thickness and vary bilinearly over the shell surface.
施加的横向热梯度假定为沿厚度方向线形变化,在壳体表面则双线形变化。
An assemblage of flat shell elements can produce a good approximation of a
curved shell surface provided that each flat element does not extend over more
than a 15° arc. If an elastic foundation stiffness is input, one-fourth of the total
is applied at each node. Shear deflection is not included in this thin-shell
element.
一系列相互之间角度小于15°的平面壳单元可以很好的模拟一个曲线壳。如果输入一
个弹性地基刚度,则每个节点作用1/4,剪切变形在这种薄壳里不被考虑。
•
•
A triangular element may be formed by defining duplicate K and L node
numbers as described in Triangle, Prism and Tetrahedral Elements. The extra
shapes are automatically deleted for triangular elements so that the membrane
stiffness reduces to a constant strain formulation. For large deflection analyses,
if KEYOPT(1) = 1 (membrane stiffness only), the element must be triangular.
一个三角形单元,如Triangle, Prism and Tetrahedral Elements里描述,用重合K、L
节点的方法形成。对于三角形单元,额外的形状自动被删除,膜力刚度缩减为常应
变公式。对于大变形分析,如果KEYOPT(1) = 1(仅考虑膜力刚度),单元必须是
三角形。
•
•
For KEYOPT(1) = 0 or 2, the four nodes defining the element should lie as
close as possible to a flat plane (for maximum accuracy), but a moderate
amount of warping is permitted. For KEYOPT(1) = 1, the warping limit is
very restrictive. In either case, an excessively warped element may produce a
warning or error message. In the case of warping errors, triangular elements
should be used (see Triangle, Prism and Tetrahedral Elements). Shell element
warping tests are described in detail in tables of Applicability of Warping
Tests and Warping Factor Limits in the ANSYS, Inc. Theory Reference.
KEYOPT(1) = 0 or 2时四节点单元必须在准确的平面上。不过,一小点的出平面公
差可能使单元具有轻微的翘曲形状。KEYOPT(1) = 1适度的翘曲单元将在输出中产
生一个警告信息。如果翘曲非常严重,将产生一个致命的信息结果,应该考虑使用
三角形单元。详见Triangle, Prism and Tetrahedral Elements。如果集中质量矩阵公式
被指定
•
If the lumped mass matrix formulation is specified [LUMPM,ON], the effect
of the implied offsets on the mass matrix is ignored for warped SHELL63
elements.
•
([LUMPM,ON]),对于翘曲SHELL63单元,质量矩阵的implied offsets将被忽略。
•
SHELL63 Product Restrictions
SHELL63产品限制
When used in the product(s) listed below, the stated product-specific restrictions
apply to this element in addition to the general assumptions and restrictions given in
the previous section.
如果在下面列出的ANSYS产品中使用这种单元时,除了上面列出的一般假设和约束外,对
这种单元还有其它规定的产品特殊限制。
ANSYS Professional.
•
•
•
•
•
•
•
•
The DAMP material property is not allowed.
DAMP材料属性不允许
The only special features allowed are stress stiffening and large deflection.
唯一允许的特殊特性是应力刚化和大变形
KEYOPT(2) can only be set to 0 (default).
KEYOPT(2) 只能设为0(默认的)
KEYOPT(9) can only be set to 0 (default).
KEYOPT(9) 只能设为0(默认的)
版权声明:本文标题:SHELL63单元中文说明 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://roclinux.cn/b/1718668553a725419.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论