admin 管理员组

文章数量: 1086019


2024年4月16日发(作者:滚动图片怎么制作html)

数量积的表示方法

English:

The dot product, also known as the scalar product or the inner

product, is a way of multiplying two vectors. It results in a single

scalar quantity, rather than a vector. The dot product of two vectors

is denoted by a·b, where a and b are the two vectors and the dot

represents the operation. The formula for calculating the dot product

of two vectors a and b in three-dimensional space is given by a·b = a

b cos(θ), where a and b are the magnitudes of the vectors and θ is

the angle between them. In terms of components, the dot product

can also be calculated as the sum of the products of the

corresponding components of the two vectors. This can be

expressed as a·b = a1b1 + a2b2 + a3b3 in three-dimensional space,

where a1, a2, a3 are the components of vector a, and b1, b2, b3 are

the components of vector b.

中文翻译:

数量积,又称为标量积或内积,是一种将两个向量相乘的方式。它的结果是

一个标量数量,而不是一个向量。两个向量的数量积用a·b表示,其中a和

b是两个向量,点表示相乘操作。在三维空间中,计算两个向量a和b的数

量积的公式为a·b = a b cos(θ),其中a和b是向量的大小,θ是它们之间

的角度。在分量方面,数量积也可以被计算为两个向量对应分量的乘积之和。

这可以写成在三维空间中a·b = a1b1 + a2b2 + a3b3,其中a1、a2、a3

是向量a的分量,b1、b2、b3是向量b的分量。


本文标签: 向量 数量 分量 相乘 表示