admin 管理员组文章数量: 1086019
2024年4月16日发(作者:滚动图片怎么制作html)
数量积的表示方法
English:
The dot product, also known as the scalar product or the inner
product, is a way of multiplying two vectors. It results in a single
scalar quantity, rather than a vector. The dot product of two vectors
is denoted by a·b, where a and b are the two vectors and the dot
represents the operation. The formula for calculating the dot product
of two vectors a and b in three-dimensional space is given by a·b = a
b cos(θ), where a and b are the magnitudes of the vectors and θ is
the angle between them. In terms of components, the dot product
can also be calculated as the sum of the products of the
corresponding components of the two vectors. This can be
expressed as a·b = a1b1 + a2b2 + a3b3 in three-dimensional space,
where a1, a2, a3 are the components of vector a, and b1, b2, b3 are
the components of vector b.
中文翻译:
数量积,又称为标量积或内积,是一种将两个向量相乘的方式。它的结果是
一个标量数量,而不是一个向量。两个向量的数量积用a·b表示,其中a和
b是两个向量,点表示相乘操作。在三维空间中,计算两个向量a和b的数
量积的公式为a·b = a b cos(θ),其中a和b是向量的大小,θ是它们之间
的角度。在分量方面,数量积也可以被计算为两个向量对应分量的乘积之和。
这可以写成在三维空间中a·b = a1b1 + a2b2 + a3b3,其中a1、a2、a3
是向量a的分量,b1、b2、b3是向量b的分量。
版权声明:本文标题:数量积的表示方法 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://roclinux.cn/b/1713224881a624757.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论