admin 管理员组

文章数量: 1086019


2024年3月20日发(作者:demotivate)

高一数学函数图像总结(精选3篇)

1.高一数学函数图像总结 第1篇

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯

一确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表

示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法

叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值。

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

2.高一数学函数图像总结 第2篇

奇函数和偶函数的定义:

奇函数:如果函数f(x)的定义域中任意x有f(—x)=—f(x),则函数f

(x)称为奇函数。

偶数函数:如果函数f(x)的定义域中任意x有f(—x)=f(x),则函数f

(x)称为偶数函数。

性质:

奇函数性质:

1、图象关于原点对称

2、满足f(—x)= — f(x)

3、关于原点对称的区间上单调性一致

4、如果奇函数在x=0上有定义,那么有f(0)=0

5、定义域关于原点对称(奇偶函数共有的)

偶函数性质:

1、图象关于y轴对称

2、满足f(—x)= f(x)

3、关于原点对称的区间上单调性相反

4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0

5、定义域关于原点对称(奇偶函数共有的)

常用运算方法:

奇函数±奇函数=奇函数;

偶函数±偶函数=偶函数;

奇函数×奇函数=偶函数;

偶函数×偶函数=偶函数;

奇函数×偶函数=奇函数。

证明方法:

设f(x),g(x)为奇函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—

x)=—f(x)+(—g(x))=—t(x),所以奇函数加奇函数还是奇函数;

若f(x),g(x)为偶函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—

x)=f(x)+g(x)=t(x),所以偶函数加偶函数还是偶函数。

3.高一数学函数图像总结 第3篇

1.函数的定义

函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运

用函数的各种性质来解决具体的问题。

设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意

一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A-B为从集合

A到集合B的一个函数,记作y=f(x),xA

2.函数的定义域

函数的定义域分为自然定义域和实际定义域两种,如果给定的函数的解析式(不注

明定义域),其定义域应指的是使该解析式有意义的自变量的取值范围(称为自然

定义域),如果函数是有实际问题确定的,这时应根据自变量的实际意义来确定,

函数的值域是由全体函数值组成的集合。

3.求解析式

求函数的解析式一般有三种种情况:

(1)根据实际问题建立函数关系式,这种情况需引入合适的变量,根据数学的有

关知识找出函数关系式。

(2)有时体中给出函数特征,求函数的解析式,可用待定系数法。

(3)换元法求解析式,f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出

x,代入g(x)进行换元来解。掌握求函数解析式的前提是,需要对各种函数的性质

了解且熟悉。

目前我们已经学习了常数函数、指数与指数函数、对数与对数函数、幂函数、三角

函数、反比例函数、二次函数以及由以上几种函数加减乘除,或者复合的一些相对

较复杂的函数,但是这种函数也是初等函数。


本文标签: 函数 解析 叫做 数学 定义域