admin 管理员组

文章数量: 1087139


2024年3月14日发(作者:图片视频素材库)

python求二元函数极值的粒子群算法

粒子群优化算法(PSO)是一种数值优化算法,可以用于求解二元函数的极值问

题。下面给出一个使用Python实现的简单的二元函数极值的粒子群算法代码示

例:

python

import random

import numpy as np

# 目标函数

def objective_function(x, y):

return x2 + y2

class Particle:

def __init__(self, x, y):

on = ([x, y])

ty = ([m(-1, 1),

m(-1, 1)])

_position = on

_fitness = float('inf')

def update_velocity(self, global_best_position, omega, phip, phig):

r1 = ()

r2 = ()

ty = omega * ty + phip * r1 *

(_position - on) + phig * r2 * (global_best_position -

on)

def update_position(self):

on = on + ty

# 限制位置在取值范围内

on = (on, -10, 10)

def update_best(self, fitness):

if fitness < _fitness:

_position = on

_fitness = fitness

def particle_swarm_optimization(max_iter, num_particles, omega, phip,

phig):

particles = []

global_best_position = ([float('inf'), float('inf')])

global_best_fitness = float('inf')

# 初始化粒子群

for _ in range(num_particles):

x = m(-10, 10)

y = m(-10, 10)

particle = Particle(x, y)

(particle)

# 迭代更新

for _ in range(max_iter):

for particle in particles:

fitness = objective_function(on[0],

on[1])

# 更新个体最优解

_best(fitness)

# 更新全局最优解

if fitness < global_best_fitness:

global_best_position = on

global_best_fitness = fitness

for particle in particles:

# 更新粒子速度和位置

_velocity(global_best_position, omega, phip,

phig)

_position()

return global_best_position, global_best_fitness

# 运行粒子群优化算法

max_iter = 100

num_particles = 50

omega = 0.8

phip = 0.8

phig = 0.8

best_position, best_fitness = particle_swarm_optimization(max_iter,

num_particles, omega, phip, phig)

print("Best position: ({:.4f}, {:.4f})".format(best_position[0],

best_position[1]))

print("Best fitness: {:.4f}".format(best_fitness))

这是一个简单的粒子群优化算法实现,其中使用了二维坐标表示粒子的位置和速

度。目标函数为x^2 + y^2,需要优化的是该函数的最小值。代码根据给定的

迭代次数、粒子数以及惯性权重等参数,最终输出找到的最优位置和对应的最优

函数值。


本文标签: 粒子 算法 位置