admin 管理员组文章数量: 1087139
2024年2月29日发(作者:开源手机框架jquery)
正弦余弦公式总结
1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(2π-a)=cos(a)
cos(2π-a)=sin(a)
sin(2π+a)=cos(a)
cos(2π+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
tgA=tanA=sinAcosA
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)tan(b)]
第 1 页 共 3 页
tan(a-b)=[tan(a)-tan(b)]/[1+tan(a)tan(b)]
3.和差化积公式
sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)
sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)
cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)
cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)
4.积化和差公式(上面公式反过来就得到了)
sin(a)sin(b)=-1/2* [cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2* [cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2* [sin(a+b)+sin(a-b)]
cos(a)sin(b)=1/2* [sin(a+b)-sin(a-b)]
5.二倍角公式
sin(2a)=2sin(a)cos(a)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
6.半角公式
2sin2(a/2)=1-cos(a)
2cos2(a/2)=1+cos(a)
tan(a/2)=[1-cos(a)]/sin(a)=sina/[1+cos(a)]
tan2(a/2)= [1-cos(a)]/[1+cos(a)]
7.万能公式
sin(a)=2tan(a/2)/[1+tan2(a/2)]
第 2 页 共 3 页
cos(a)=[1-tan2(a/2)]/[1+tan2(a/2)]
tan(a)=2tan(a/2)/[1-tan2(a/2)]
8.其它公式(推导出来的)
a*sin(a)+b*cos(a)=sin(a+c) 其中tan(c)=b/a
a*sin(a)-b*cos(a)=cos(a-c) 其中tan(c)=a/b
1+sin(a)=(sin(a/2)+cos(a/2))2
1-sin(a)=(sin(a/2)-cos(a/2))2
三、正弦定理:
a/sinA=b/sinB=c/sinC=2R
其中R是三角形外接圆半径
正弦定理可以解决以下三角问题:
①两角和任一边,求其它两边和一角。
②两边和其中一边的对角,求另一边的对角。
⑵公式的变形:a:b:c=sinA:sinB:sinC
a=k*sinA, b=k*sinB, c=k*sinC
四、余弦定理:
a2=b2+c2-2bccosA
b2=a2+c2-2accosB
c2=a2+b2-2abcosC
第 3 页 共 3 页
版权声明:本文标题:正弦余弦公式总结 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://roclinux.cn/b/1709181251a539349.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论